欢迎来到天天文库
浏览记录
ID:39830887
大小:192.15 KB
页数:9页
时间:2019-07-12
《201002-A Short Note on Compressed Sensing》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、AShortNoteonCompressedSensingwithPartiallyKnownSignalSupportTechnicalReport:TR-LJ-2009.02(UpdatedVersion)L.JacquesCommunicationsandRemoteSensingLaboratory(TELE)UniversitecatholiquedeLouvain(UCL)Louvain-la-Neuve,BelgiumFebruary21,2010AbstractThisshortnotestudiesavar
2、iationoftheCompressedSensingparadigmintroducedrecentlybyVaswanietal.,i.e.therecoveryofsparsesignalsfromacertainnumberoflinearmeasure-mentswhenthesignalsupportispartiallyknown.ThereconstructionmethodisbasedonaconvexminimizationprogramcoinedinnovativeBasisPursuitDeNois
3、e(oriBPDN).Underthecommon`2-delityconstraintmadeontheavailablemeasurements,thisoptimizationpromotesthe(`1)sparsityofthecandidatesignaloverthecomplementofthisknownpart.Inparticular,thispaperextendstheresultsofVaswanietal.tothecasesofcompressiblesignalsandnoisymeasure
4、ments.OurproofreliesonasmalladaptionoftheresultsofCandesin2008forcharacterizingthestabilityoftheBasisPursuitDeNoise(BPDN)program.WeemphasizealsoaninterestinglinkbetweenourmethodandtherecentworkofDavenportetal.onthe-stableembeddingsandthecancel-then-recoverstrategyap
5、pliedtoourproblem.Forbothapproaches,reconstructionsareindeedstabilizedwhenthesensingmatrixrespectstheRestrictedIsometryPropertyforthesamesparsityorder.Weconcludebysketchinganeasynumericalmethodrelyingonmonotoneoperatorsplittingandproximalmethodsthatiterativelysolvesi
6、BPDN.Keywords:SparseSignalRecovery,CompressedSensing,ConvexOptimization,InstanceOptimality.1IntroductionThetheoryofCompressedSensing(CS)[2,10]aimsatreconstructingsparseorcompressiblesignalsfromasmallnumberoflinearmeasurementscomparedtothedimensionalityofthesignalspac
7、e.Inshort,thesignalreconstructionispossibleiftheunderlyingsensingmatrixiswellbehaved,i.e.ifitrespectsaRestrictedIsometryProperty(RIP)sayingroughlythatanysmallsubsetofitscolumnsisclose"toanorthogonalbasis.Thesignalrecoveryisthenobtainedusingnon-lineartechniqueslaure
8、nt.jacques@uclouvain.be.ResearchsupportedbyBelgianNationalScienceFoundation(F.R.S.-FNRS).1basedonconvexoptimizationpromotingsignals
此文档下载收益归作者所有