欢迎来到天天文库
浏览记录
ID:39804904
大小:155.50 KB
页数:3页
时间:2019-07-11
《数学北师大版八年级下册1.4角平分线1》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、课题:1.4角平分线(一)教学目标1.会证明角平分线的性质定理及其逆定理.2.经历探索,猜想,证明使学生掌握研究解决问题的方法。教学重难点正确地表述角平分线性质定理的逆命题及其证明。教学设计一:引入新课:我们曾用折纸的方法探索过角平分线上的点的性质,步骤如下:从折纸过程中,我们可以得出CD=CE,即角平分线上的点到角两边的距离相等.你能证明它吗?二、导(1)性质定理的证明求证:角平分线上的点到角两边的距离相等已知:如图,OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D、E.求证:PD=PE.证明:∵∠1=∠2,OP=OP,∠PDO
2、=∠PEO=90°,∴△PDO≌△PEO(AAS).∴PD=PE(全等三角形的对应边相等).(2)你能写出这个定理的逆命题吗?引导学生分析结论后完整地叙述出角平分线性质定理的逆命题:在一个角的内部且到角的两边距离相等的点,在这个角的角平分线上.它是真命题吗?你能证明它吗?证明如下:已知:在么AOB内部有一点P,且PD上OA,PE⊥OB,D、E为垂足且PD=PE,求证:点P在么AOB的角平分线上.证明:PD⊥OA,PE⊥OB,学生活动拿出准备好的纸折的角,在老师示范的同时按要求把角和角的边对折几次,观察折痕的性质。由折纸的过程,可以观察到折痕和角的边垂直,并
3、且对应的折痕长度相等。说出猜想:折痕和角的两边垂直,并且对应的折痕长度相等。说明白已是通过折纸的过程和观察得到上述猜测的。加深对角平分线性质定理的理解。朗读:角平分线上的点到这个角的两边的距离相等。在读的同时加强记忆和理解。∴∠PDO=∠PEO=90°.在Rt△ODP和Rt△OEP中OP=OP,PD=PE,∴Rt△ODP≌Rt△OEP(HL定理).∴∠1=∠2(全等三角形对应角相等).逆命题利用公理和我们已证过的定理证明了,那么我们就可以把这个逆命题叫做原定理的逆定理.我们就把它叫做角平分线的判定定理。(3)用直尺和圆规画已知角的平方线及作图的依据讨论。三
4、、练课本例题1:在△ABC中,∠BAC=60°,点D在BC上,AD=10,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,求DE的长.活动内容:学生自主完成P4第2题:如图(图略),在△ABD中,C是BD上的一点,且AC⊥BD,AC=BC=CD,(1)求证:△ABD是等腰三角形;(2)求∠BAD的度数。例2.判断下列推理是否正确(1)如图,∵AD平分∠BAC,PE⊥AB,PF⊥AC∴PE=PF(角平分线上的点到这个角的两边距离相等)()(2)如图,∵PE=PF∴AD平分∠BAC(到角两边距离相等的点在这个角的平分线上)()(3)如图,∵点P在∠BA
5、C的平分线上∴PE=PF(角平分线上的点到这个角的两边距离相等)()四、测:如图,某个居民小区C附近有三条两两相交的道路MN、OA、OB,拟在MN上建造一个大型超市,使得它到OA、OB的距离相等,请确定该超市的位置P。五、教学反思本节关注学生已有活动经验的回顾过程,关注了“探索-发现-猜想-证明”的活动过程,关注了学生自主探究过程,学生学习的主体性发挥较好,应该说取得了较好的教学效果。当然,在具体活动中,如何在学生活动与规范表达之间形成一个恰当的平衡,具体各部分时间比例的分配可能还需要根据班级学生具体状况进行适度的调整。
此文档下载收益归作者所有