数学北师大版八年级下册利用平方差公式经行因式分解

数学北师大版八年级下册利用平方差公式经行因式分解

ID:39803399

大小:206.50 KB

页数:27页

时间:2019-07-11

数学北师大版八年级下册利用平方差公式经行因式分解_第1页
数学北师大版八年级下册利用平方差公式经行因式分解_第2页
数学北师大版八年级下册利用平方差公式经行因式分解_第3页
数学北师大版八年级下册利用平方差公式经行因式分解_第4页
数学北师大版八年级下册利用平方差公式经行因式分解_第5页
资源描述:

《数学北师大版八年级下册利用平方差公式经行因式分解》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第二章一元一次不等式和一元一次不等式组2.1不等关系一、教学目标1.知识与技能:理解不等式的意义;能根据条件列出不等式.2.过程与方法:通过列不等式,训练学生的分析判断能力和逻辑推能力.3.情感态度与价值观:通过用不等式解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用,并以此激发学生学习数学的信心和兴趣.二、教学重难点1.重点:用不等关系解决实际问题.2.难点:正确理解题意列出不等式.三、教学课时:1课时四、教法与学法:讨论探索法五、教具准备:多媒体课件六、教学过程(一)

2、创设问题情境,引入新课我们学过等式,知道利用等式可以解决许多问题.同时,我们也知道在现实生活中还存在许多不等关系,利用不等关系同样可以解决实际问题.本节课我们就来了解不等关系,以及不等关系的应用.(二)新课讲授既然不等关系在现实生活中并不少见,大家肯定接触过不少,能举出例子吗?那么,如何用式子表示不等关系呢?请看例题.(课件)例1:用两根长度均为lcm的绳子,分别围成一个正方形和圆.(1)如果要使正方形的面积不大于25cm2,那么绳长l应满足怎样的关系式?(2)如果要使圆的面积不小于100cm2

3、,那么绳长l应满足怎样的关系式?(3)当l=8时,正方形和圆的面积哪个大?l=12呢?(4)你能得到什么猜想?改变l的取值,再试一试.本题中大家首先要弄明白两个问题,一个是正方形和圆的面积计算公式,另一个是了解“不大于”“大于”等词的含意.两数比较有大于、等于、小于三种情况,“不大于”就是等于或小于.下面请大家互相讨论,按照题中的要求进行解答.猜想:用长度均为lcm的两根绳子分别围成一个正方形和圆,无论l取何值,圆的面积总大于正方形的面积,即>.做一做:课件通过测量一棵树的树围(树干的周长)可以

4、计算出它的树龄.通常规定以树干离地面1.5m的地方作为测量部位,某树栽种时的树围为5cm,以后树围每年增加约为3cm.这棵树至少生长多少年其树围才能超过2.4m?(只列关系式).[师]请大家互相讨论后列出关系式.议一议:观察由上述问题得到的关系式,它们有什么共同特点?一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式.[例]用不等式表示(1)a是正数;(2)a是负数;(3)a与6的和小于5;(4)x与2的差小于-1;(5)x的4倍大于7;(6)y的一半小于3.(三)随堂练习

5、当x=2时,不等式x+3>4成立吗?当x=1.5时,成立吗?当x=-1呢?(四)课时小结能根据题意列出不等式,特别要注意“不大于”,“不小于”等词语的理解.通过不等关系的式子归纳出不等式的概念.(五)课后作业:习题1.1第1题,第2题,第3题,第4题.(六)板书设计:2.1不等关系不等式:用来表示不等关系的式子叫不等式。用符号>、<、连接的式子叫不等式。(七)课后反思2.2不等式的基本性质一、教学目标1.知识与技能:探索并掌握不等式的基本性质;理解不等式与等式性质的联系与区别.2.过程与方法:通

6、过对比不等式的性质和等式的性质,培养学生的求异思维,提高大家的辨别能力.3.情感态度与价值观:通过大家对不等式性质的探索,培养大家的钻研精神,同时还加强了同学间的合作与交流.二、教学重难点1.重点:探索不等式的基本性质,并能灵活地掌握和应用.2.难点:能根据不等式的基本性质进行化简.三、教学方法:类推探究法四、教具准备:粉笔,三角板五、教学课时:1课时六、教学过程(一)创设问题情境,引入新课我们学习了等式,并掌握了等式的基本性质,大家还记得等式的基本性质吗?等式的基本性质1:在等式的两边都加上(

7、或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证.(二)新课讲授1.不等式基本性质的推导等式的性质我们已经掌握了,那么不等式的性质是否和等式的性质一样呢?请大家探索后发表自己的看法.3<5∴3+2<5+23-2<5-23+a<5+a3-a<5-a有以上推理你可以得到什么猜想?不等式性质1:在不等式的两边都加上(或减去)同一个整式,不等号的方向

8、不变.∵3<5∴3×2<5×23×<5×.[师]同学们又可以得到什么猜想?结论:在不等式的两边都乘以同一个数,不等号的方向不变.不对,如3<5,3×(-2)>5×(-2)所以上面的总结是错的.看来大家有不同意见,请互相讨论后举例说明.如3<43×3<4×33×<4×3×(-3)>4×(-3)3×(-)>4×(-)3×(-5)>4×(-5)不等式性质2:在不等式的两边同乘以一个正数时,不等号的方向不变;在不等式的两边同乘以一个负数时,不等号的方向改变.[师]非常棒,那么在不等式的两边同时除以某一个

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。