欢迎来到天天文库
浏览记录
ID:39803184
大小:690.50 KB
页数:33页
时间:2019-07-11
《量子力学入门》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、量子力学入门维尔纳·海森堡和埃尔温·薛定谔,量子力学的两位奠基人。量子力学(英语:QuantumMechanics,或称量子论)是描述微观物质(原子,亚原子粒子)行为的物理学理论,量子力学是我们理解除万有引力之外的所有基本力(强相互作用,电磁相互作用,弱相互作用,引力相互作用)的基础(关于引力的量子力学理论请参见“量子引力”)。量子力学是许多物理学分支的基础,包括电磁学,粒子物理,凝聚态物理,以及宇宙学的部分内容。量子力学也是化学键理论(因此也是整个化学的基础),结构生物学以及电子学,信息技术,纳米技术等学科的基础。一个世纪以来的实验和实际
2、应用已经充分证明了量子力学的成功和实用价值。量子力学始于20世纪初马克斯·普朗克和尼尔斯·玻尔的开创性工作,马克斯·玻恩于1924年创造了“量子力学”一词。因其成功的解释了经典力学无法解释的实验现象,并精确地预言了此后的一些发现,物理学界开始广泛接受这个新理论。量子力学早期的一个主要成就是成功地解释了波粒二象性,此术语源于亚原子粒子同时表现出粒子和波的特性。量子力学已经渗透到了比广义相对论更广泛的应用范围,[来源请求]比如微观领域(原子或亚原子),高能或低能状态以及超低温状态。第一个量子理论︰普朗克和黑体辐射铁匠房里的高温金属加工品。橘黄色
3、的光芒是物体因高温而发射出的热辐射之中看得见的那一部分。图片中每一样物品同样以热辐射形式散发著光芒,但亮度不足,且肉眼看不见较长的波长。远红外线摄影机可捕捉到这些辐射。热辐射即物体因其自身温度而从物体表面发射出来的电磁辐射。如果有一个物体经过充分加热以后,会开始发射出光谱中红色端的光线而变得火红。再进一步加热物体时会使颜色发生变化,发射出波长较短(频率较高)的光线。而且这个物体既可以是完美的发射体,同时也可以是完美的吸收体。当物体处于冰冷状态时,看起来是纯粹的黑色,此时物体几乎不会发射出可见光,而且还会吸纳落在物体上的光线。这个理想的热发射
4、体就被视为黑体,而黑体发出的辐射就称为黑体辐射。在19世纪末期,热辐射在实验上已有相当清晰的描述。维恩位移定律指出辐射最强处的波长,斯特藩-玻尔兹曼定律指出每一单位面积发射出的总能量。当温度逐步递增时,光的颜色会从红色转成黄色,再转成白色、蓝色。当峰值波长移向紫外线时,蓝色波长中仍有足够的辐射会发射出来,使物体持续显现成蓝色。物体绝对不会变得看不见,可见光的辐射会以单调形式逐步增强。[1]所有频率段所发射的辐射量都会增强,但较短波长处的增强幅度相对要大的多,因此在强度分布里的峰值就会移向较短的波长。不同温度下的黑体所辐射出的总能量和峰值波长
5、。经典电磁理论过份高估增强幅度,特别是短波长的部分。瑞利-金斯定律符合实验数据中的长波长部分。但在短波长部分,经典物理预测炽热物体所发射出的能量会趋于无穷大。这个被称为紫外灾难的结果显然是错的。第一个能够完整解释热辐射光谱的模型是由马克斯·普朗克于1900年提出的普朗克把热辐射建立成一群处于平衡状态的谐振子模型。为了符合实验结果,普朗克不得不假设每一个谐振子必定以自身的特征频率为能量单位的整数倍,而不能随意发射出任意量的能量。也就是说,每一个谐振子的能量都经过“量子化”。每一个谐振子的能量量子与谐振子的频率成一比例,这个比例常数就称为普朗克
6、常数。普朗克常数的符号为h,其值为6.63×10−34Js,频率f的谐振子能量E为此处普朗克定律是物理学中第一个量子理论,也使普朗克荣获1918年的诺贝尔奖“为表扬普朗克对于能量量子的发现和促使物理学进步的贡献”。但当时普朗克认为量子化纯粹只是一种数学把戏,而非(我们今日所知的)改变了我们对世界的理解的基本原理。1690年,惠更斯提出了光的波动学说用以解释干涉和折射现象,[7]而艾萨克·牛顿坚信光是由极其微小的粒子构成的,他把这种粒子叫作“光子(corpuscles)”。由于牛顿本人的高度权威,微粒说在很长的一段时间占据着上风,1827年,
7、托马斯·杨和奥古斯丁·菲涅耳用实验证明了光存在干涉现象,这是和“微粒说”不相容的。随着波动学说的数学理论逐渐完善,到19世纪末,无论是实验还是理论上,牛顿的理论都失去了以往的地位。1874年,乔治·强斯顿·史东尼首次提出了电荷的概念,它是带电体的基本量,不能再被拆分成更小的部分。电荷也就成为了第一个被量子化的物理量。1873年,詹姆斯·克拉克·麦克斯韦给出了著名的麦克斯韦方程,在理论上证明振荡的电路能够产生电磁波,这使得纯粹的通过电磁测量手段来测量电磁波的速度成为了可能。而测量结果显示电磁波的速度非常的接近于光速。也就是说,光也是一种电磁波
8、。亨里克·赫兹制作了一个能够产生低于可见光频率的电磁波(现在我们称之为微波)的仪器。早期研究的争议在于如何解释电磁辐射的本质,一些人认为这是因为其的粒子性,而另一些人宣称这是一种
此文档下载收益归作者所有