数学北师大版九年级上册菱形的性质与教学设计

数学北师大版九年级上册菱形的性质与教学设计

ID:39799080

大小:748.27 KB

页数:9页

时间:2019-07-11

数学北师大版九年级上册菱形的性质与教学设计_第1页
数学北师大版九年级上册菱形的性质与教学设计_第2页
数学北师大版九年级上册菱形的性质与教学设计_第3页
数学北师大版九年级上册菱形的性质与教学设计_第4页
数学北师大版九年级上册菱形的性质与教学设计_第5页
资源描述:

《数学北师大版九年级上册菱形的性质与教学设计》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、菱形的性质与判定(一)教学过程设计本节课设计了六个教学环节:第一环节:课前准备;第二环节:设置情境,提出课题;第三环节:猜想、探究与证明;第四环节:性质应用与巩固;第五环节:课堂小结;第六环节:布置作业。第一环节 课前准备1、教师在课前布置学生复习平行四边形的性质,搜集菱形的相关图片。2、教师准备菱形纸片,上课前发给学生上课时使用。第二环节设置情境,提出课题【教学内容】学生:观察衣服、衣帽架和窗户等实物图片。教师:同学们,在观察图片后,你能从中发现你熟悉的图形吗?你认为它们有什么样的共同特征呢?学生1:图片中有八年级学过的平行四边形。教师:请同学们观察,彩图中的平行四边形与ABCD相比较,还有

2、不同点吗?学生2:彩图中的平行四边形不仅对边相等,而且任意两条邻边也相等。教师:同学们观察的很仔细,像这样,“一组邻边相等的平行四边形叫做菱形”。【教学目的】通过这个环节,培养了学生的观察和对比分析能力。上课时让学生观察图形,从直观上把握菱形的特点,从而给出菱形的定义,让学生明确菱形不但是平行四边形,而且有其特点“一组邻边相等”。同时,要让学生体会数学来源于生活,让学生去发现生活中因为有了数学而变得更精彩,从而提高学生学习数学的兴趣。【注意事项】学生在通过观察对比得到菱形定义的过程中,会提出菱形的许多性质,如四条边相等、对角相等和对边平行等等,教师要对学生的答案进行积极的有鼓励性的评价,激发学

3、生的学习积极性,同时又要强调菱形不仅是平行四边形,而且有其自身特点“一组邻边相等”,这样强化了菱形的定义,又为下面的教学内容做好了铺垫。第三环节 猜想、探究与证明【教学内容】1、想一想①教师:菱形是特殊的平行四边形,它具有一般平行四边形的所有性质。你能列举一些这样的性质吗?学生:菱形的对边平行且相等,对角相等,对角线互相平分。②教师:同学们,你认为菱形还具有哪些特殊的性质?请你与同伴交流。学生活动:分小组讨论菱形的性质,组长组织组员讨论,让尽可能多的组员发言,并汇总结果。教师活动:教师巡视,并参与到学生的讨论中,启发同学们类比平行四边形,从图形的边、角和对角线三个方面探讨菱形的性质。对学生的结

4、论,教师要及时评价,积极引导,激励学生。2、做一做教师:请同学们用菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?(2)菱形中有哪些相等的线段?学生活动:分小组折纸探索教师的问题答案。组长组织,并汇总结果。教师活动:教师巡视并参与学生活动,引导学生分析怎样折纸才能得到正确的结论。学生研讨完毕,教师要展示汇总学生的折纸方法以及相应的结论,以便于后面的教学。师生结论:①菱形是周对称图形,有两条对称轴,是菱形对角线所在的直线,两条对角线互相垂直。②菱形的四条边相等。3、证明菱形性质教师:通过折纸活动,同学们已经对菱形的性质有了初步的理解,下面

5、我们要对菱形的性质进行严格的逻辑证明。教师活动:展示题目图1-1已知:如图1-1,在菱形ABCD中,AB=AD,对角线AC与BD相交于点O.求证:(1)AB=BC=CD=AD;(2)AC⊥BD.师生共析:①菱形不仅对边相等,而且邻边相等,这样就可以证明菱形的四条边都相等了。②因为菱形是平行四边形,所以点O是对角线AC与BD中点;又因为在菱形中可以得到等腰三角形,这样就可以利用“三线合一”来证明结论了。学生活动:写出证明过程,进行组内交流对比,优化证明方法,掌握相关定理。证明:(1)∵四边形ABCD是菱形,∴AB=CD,AD=BC(菱形的对边相等).又∵AB=AD∴AB=BC=CD=AD(2)∵

6、AB=AD∴△ABD是等腰三角形又∵四边形ABCD是菱形∴OB=OD(菱形的对角线互相平分)在等腰三角形ABD中,∵OB=OD∴AO⊥BD即AC⊥BD教师活动:展示学生的证明过程,进行恰当的点评和鼓励,优化学生的证明方法,提高学生的逻辑证明能力,最后强调“菱形的四条边都相等”“菱形的对角线互相垂直”,让学生形成牢固记忆,留下深刻印象。【教学目的】学生通过折纸可以猜想到菱形的相关性质,教师在参与学生的活动过程中,应该关注学生的口述论证过程,并根据学生的认知水平加以引导,尽量减少学生推理论证过程中的困难。学生经过了折纸这一操作活动后,再经过逻辑证明,把操作层面的感知上升到了理性认识,充分了解了菱形

7、的本质特征。本环节让学生进行猜想探究和证明,符合学生的认知规律。同时,操作活动得到的结论与逻辑推理相结合,是对数学知识进行探索活动的自然延续,实现了从感性认识到理性认识的升华。【注意事项】在折纸过程中,教师要与学生探讨折纸的方法,明确折叠过程中的对应点及相应的对称轴,对称轴是菱形对角线所在的直线,而不是菱形的对角线,以便于学生正确迅速找出菱形中的对称关系。掌握数学知识,离不开“实践→认识→再实践→

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。