北师大版1.5平方差公式(一)

北师大版1.5平方差公式(一)

ID:39786191

大小:43.50 KB

页数:5页

时间:2019-07-11

北师大版1.5平方差公式(一)_第1页
北师大版1.5平方差公式(一)_第2页
北师大版1.5平方差公式(一)_第3页
北师大版1.5平方差公式(一)_第4页
北师大版1.5平方差公式(一)_第5页
资源描述:

《北师大版1.5平方差公式(一)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第一章 整式的乘除5平方差公式(第1课时)广东省五华县五华中学曾德强一、教材分析:《平方差公式》是北京师范大学出版社义务教育教科书七年级下册,第一章第5节的内容。根据九年义务教育数学《课程标准》中明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。教师的职责在于向学生提供从事数学活动的机会,在活动中激发学生的学习潜能,引导学生积极自主探索、合作交流与实践创新。”平方差公式是特殊的乘法公式,它既是前面知识“多项式乘多项式”的应用,也是后继知识如因式分解,分式化简等的基础,对整个教科书也起到了承上启下的作用,在初中阶段占有很重要的地位。二、学情分析学生

2、已经学过“有理数及运算”“字母表示数”“合并同类项”“去括号”“整式乘法”等内容,经历了实际问题符号化的过程,具有一定的符号感.平方差公式是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,让学生经历从一般到特殊的过程.对它的学习和研究,不仅给出了特殊的多项式乘法的简便运算,而且为后续的因式分解、分式运算、解一元二次方程等内容奠定了基础,同时也为完全平方公式的学习提供了方法.基于此教材提出了本节课的具体学习任务:经历探索平方差公式的过程,了解公式的几何背景,并能运用平方差公式,进行简单的计算,以及实际问题的解决.三、教学目标1.知识与技

3、能:经历探索平方差公式的过程,会推导平方差公式,并能运用公式进行简单的计算,进一步发展符号感和推理能力.2.过程与方法:通过创设问题情境,让学生在数学活动中建立平方差公式模型,感受数学公式的意义和作用.在平方差公式的推导过程中,培养学生观察、发现、归纳、概括、猜想能力和有条理的表达能力.3.情感与态度:在探究学习中体会数学的现实意义,培养学习数学的信心.四、重点、难点重点:让学生了解平方差公式结构的特点,进一步加深对平方差公式的理解;难点:学生能辨别出平方差公式,并掌握平方差公式的应用。五、教学过程设计基于对教材以及教学任务的分析,本节课设计了六个教学环节

4、:复习旧知、引入新课;探究规律、发现结论;典例分析、巩固提高;观察思考、拓展延伸;当堂达标、自我检测;课堂小结、布置作业.第一环节复习旧知、引入新课活动内容:回顾整式乘法中多项式与多项式相乘1、多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.符号表示:(m+b)(n+a)=mn+ma+bn+ba2、两项式乘以两项式,结果可能是两项吗?请你举例说明活动目的:平方差公式是多项式乘法运算中一个重要的公式,它的得出可以直接利用多项式乘以多项式法则,设计这一环节的目的,是在复习上节课知识的基础上,为本节课的学习做好知识准备.实际教

5、学效果:在复习过程中,学生从知识和心理等方面,做好探究新知识的准备,从而为本节课平方差的探究学习奠定了基础.第2题是上节课的预习作业的一部分,可以让学生将举的例子写在黑板上,与下一环节结合使用.第二环节探究规律、发现结论活动内容:1.提出问题计算下列各题(1)(x+2)(x-2);(2)(1+3a)(1-3a);(3)(x+5y)(x-5y);(4)(-m+n)(-m-n).观察以上算式及其运算结果,你有什么发现?活动目的:在上一环节的基础上,引入形式特殊的多项式乘以多项式,使学生在计算过程中发现规律,体会规律的一般性,提出自己的猜想,并尝试用数学语言进行

6、描述.实际教学效果:问题提出后,学生能够主动地去寻找解决问题的方法.利用多项式与多项式的乘法法则展开后,中间两项是同类项,且系数互为相反数,所以和为零,只剩下这两个数的平方差了.观察学生所列的以及这四个算式的特征,初步得到猜想,总结规律.活动内容:2.验证猜想类比活动一中归纳的规律,学生自己再举一些类似的多项式相乘的情形,并计算验证自己的猜想.活动目的:在“活动1”中,学生通过计算能够初步感受结果的“平方差”形式,但仅仅这样就总结、得到结论,部分学生难免心存疑惑,因此让学生再次举例验证.学生经过思考、讨论、交流,进一步熟悉平方差公式的本质特征,掌握运用平方

7、差公式必须具备的条件.这样就让学生经历从特殊到一般的探究结论的过程,从而验证猜想,得到规律.实际教学效果:预习作业中学生举例主要是从结果为两项的角度出发,这里的举例学生需要同时考虑公式两边的特征.在这一活动中让学生充分经历“观察——猜想——验证”的过程,学生举的例子可能涉及以下形式:1、(-x+y)(-x-y)2、(ab+c)(ab-c)3、教师安排学生合作学习,分组验证,经历平方差公式推导归纳的过程,从而突出了本节课的重点,得到平方差公式:(a+b)(a−b)=a2−b2两数和与两数差的积,等于它们的平方差.第三环节典例分析、巩固提高活动内容:巩固练习判

8、断下面计算是否正确(1)=()(2)(3x-y)(-3x+y)=9

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。