欢迎来到天天文库
浏览记录
ID:39783196
大小:78.15 KB
页数:5页
时间:2019-07-11
《数学北师大版八年级下册《因式分解》》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第四章因式分解1.因式分解百里杜鹃管理区大水中学赵秀明一:教学目标:本课时的教学目标是:1.使学生了解因式分解的意义,理解因式分解的概念.2.认识因式分解与整式乘法的相互关系——互逆关系(即相反变形),并能运用这种关系寻求因式分解的方法.3.通过解决实际问题,学会将实际应用问题转化为用所学到的数学知识解决问题,体验解决问题策略的多样性,发展实践应用意识。4.通过对分解因式与整式的乘法的观察与比较,学习代数式的变形和转化与化归的能力,培养学生的分析问题能力与综合应用能力.情感与态度:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求
2、是的科学态度。二:教学重难点重点:因式分解的概念难点:难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法三:教学过程本节课设计了六个教学环节:复习回顾,比较探究(数→形→式)概念,引出概念(确认概念属性),类比练习,反馈练习,小结第一环节复习回顾:活动内容:用数学故事,引起学生注意,从而引出因式分解,以及复习乘法运算律及平方差公式,为下一题做铺垫。第二环节比较探究:活动内容:(1)993-99能被99整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流。5993-99=99×992-99=99(992-1)
3、∴993-99能被99整除(2)993-99能被100整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流。小明是这样做的:993-99=99×992-99×1=99(992-1)=99(99+1)(99-1)=99×98×100所以993-99能被100整除活动目的:以一连串的知识性问题引入,在学生已有的认识基础上,先让学生解决一些具体的数的运算问题,通过简便运算把一个式子化成几个数乘积的形式,并且问题的设置由浅入深,逐步让学生体会分解因数的过程和意义。这一环节的设置对学生理解下面因式分解的概念起到了很大帮助,体现了知识螺旋上升的思想。
4、想一想:(1)在回答993-99能否被100整除时,小明是怎么做的?(2)请你说明小明每一步的依据。(3)993-99还能被哪些正整数整除?为了回答这个问题,你该怎做?与同学交流。(老师点拨:回答这个问题的关键是把993-99化成了怎样的形式?)小结:以上三个问题解决问题的关键是把一个数式化成了几个数的积的形式。可以了解:993-99可以被98、99、100三个连续整数整除.将99换成其他任意一个大于1的整数,上述结论仍然成立吗?学生探究发现:用a表示任意一个大于1的整数,则:①你能理解吗?你能与同伴交流每一步怎么变形的吗?②这样变形是为了达到
5、什么样的目的?活动目的:从知识性的问题过度到思考性的问题,巧妙设问:“5将99换成其他任意一个大于1的整数,上述结论仍然成立吗?”引发学生联想到用字母表示数的方法,得出,这个过程对学生来说是思维上的一次飞跃,是从对具体、个别事物的认识上升到对一般事物规律性、结构性的认识,是对学生思维能力水平的一次提高,同时很自然的从分解因数过度到分解因式,初步树立起学生对因式分解概念的直观认识。议一议:经历从分解因数到分解因式的类比过程。探究概念本质属性。第三环节:引出概念:把一个多项式化成几个整式的积的形式叫做把这个多项式分解因式。第四环节:类比练习活动内容
6、:计算下列式子:(1)3x(x-1)=;(2)m(a+b-1)=;(3)(m+4)(m-4)=;(4)(y-3)2=;根据上面的算式填空:(1)3x2-3x=;5(2)ma+mb-m=;(3)m2-16=;(4)y2-6y+9=.思考:因式分解与整式乘法有什么关系?举例说明活动目的:通过两组互逆关系的练习,类比两种不同的逆运算,进一步让学生体会什么是分解因式,这个时候,分解因式的概念已基本在学生头脑中确立。由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力.第五环节反馈练习活动内容:1、看谁连得准x2-y2.(x+3)29-25x2y
7、(x-y)+6x+9(3-5x)(3+5x)xy-y2(x+y)(x-y)2、下列哪些变形是因式分解,为什么?(1)(a+3)(a-3)=a2-9(2)m2-4=(m+2)(m-2)(3)a2-b2+1=(a+b)(a-b)+1(4)2πR+2πr=2π(R+r)活动目的:通过学生独立思考和讨论探究,从具体实例中进一步理解概念,抽象出新概念的本质属性加深对新概念的掌握。第六环节:小结活动内容:(1)你能说说什么是分解因式吗?把一个多项式化成几个整式的积的形式叫做把这个多项式分解因式。(2)应该怎样认识“因式分解”?分解因式与整式乘法是互逆过程.
8、分解因式要注意以下几点:1.分解的对象必须是多项式.52.分解的结果一定是几个整式的乘积的形式.3.要分解到不能分解为止.活动目的:回顾、总结、提高知
此文档下载收益归作者所有