欢迎来到天天文库
浏览记录
ID:39781541
大小:42.61 KB
页数:5页
时间:2019-07-11
《数学北师大版八年级上册教学设计.2.1教学设计》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、2.2平方根(一)教学目标:(一)教学知识点1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根.2.了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根.3.了解算术平方根的性质.(二)能力训练要求1.加强概念形成过程的教学,提高学生的思维水平.2.鼓励学生进行探索和交流,培养他们的创新意识和合作精神.(三)情感与价值观要求1.让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.2.训练学生动脑、动口、动手能力.学情分析:学生在七年级已经学习了乘方运算,这节课之前学习了无理数,基本上解决这节课的基础。教学方法:讨论比较法.多
2、媒体:平台教学重点:了解算术平方根的概念、性质,会用根号表示一个正数的算术平方根.教学难点:了解算术平方根的概念、性质.教学过程:Ⅰ.新课导入在七年级我们学过若x2=a,则a叫x的平方,反过来x叫a的什么呢?本节课我们就来一起研究这个问题.Ⅱ.讲授新课[师]在讲新课之前,我们先回忆一下勾股定理,请同学们回答.[生]勾股定理就是在直角三角形中两条直角边的平方和等于斜边的平方.[师]下面请大家根据勾股定量,结合图形完成填空.根据下图填空x2=_________y2=_________z2=_________w2=_________[师]请大家思考后回答.[生]x2=2,y2=3,z
3、2=4,w2=5.[师]请大家再分析一下,x,y,z,w中哪些是有理数?哪些是无理数?[生]x,y,w是无理数,z是有理数.[师]为什么呢?[生]因为没有任何整数或分数的平方等于2,3,5,所以x,y,z不是有理数,而22=4,所以z=2.[师]这位同学分析得非常正确,那么大家能不能把上图中的x,y,z,w表示出来呢?请大家仔细看书后回答.[生]x=,y=,z=,w=.[师]若一个正数x的平方等于a,即x2=a,则这个正数x就叫做a的算术平方根.记为“”读作“根号a”.这就是算术平方根的定义.特别地规定0的算术平方根是0,即=0.[师]下面我们根据算术平方根的定义求一些数的算术
4、平方根.[例1]求下列各数的算术平方根:(1)900;(2)1;(3);(4)14.解:(1)因为302=900,所以900的算术平方根是30,即=30;(2)因为12=1,所以1的算术平方根是1,即=1;(3)因为所以的算术平方根是,即;(4)14的算术平方根是.通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的?[生]是通过平方来求的.[师]对.由此我们可以看出一个正数的平方和求算术平方根是互为逆运算.而且我们在例题中的步骤采取语言叙述和符号表示互相补充的做法,目的是让大家明白算术平方根的概念,以及从计算中进一步体会一个正数的平方和求算术平方根是互为
5、逆运算.在以后的步骤中可以简化.[例2]自由下落的物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?解:将h=19.6代入公式h=4.9t2得t2=4,所以t==2(秒)即铁球到达地面需要2秒.[师]下面大家再观察一下刚才咱们求出的算术平方根有什么特点.[生甲]算术平方根是整数或分数,即为有理数.[生乙]不对,那是不是有理数?若是则是,分数还是整数?[生丙]因为没有任何一个整数或分数的平方等于14,所以不是有理数,而是无理数.[师]大家的分析都有道理,我提示一下从符号方面考虑.[生甲]噢,算术平方根是正数
6、,如,2.[生乙]不对,还有零呢.正数的算术平方根是正数,零的算术平方根为零.[师]非常正确,那负数的算术平方根是否为负数呢?若(-2)2=4.则=-2对吗?或者=-2对吗?[生甲]不对.因为算术平方根的定义是一个正数的x的平方等于a,这个正数x就叫做a的算术平方根,所以算术平方根不可能是负数.[师]由此看来,定义中的a和x都为正数,即算术平方根是非负数,负数没有算术平方根.用式子表示为(a≥0)为非负数,这是算术平方根的性质.Ⅲ.课堂练习(一)P27随堂练习1题.(二)补充练习.一、填空题a1.若一个数的算术平方根是,则这个数是_________.2.的算术平方根是_____
7、____.3.正数_________的平方为的算术平方根为_________.4.(-1.44)2的算术平方根为_________.5.的算术平方根为_________,=_________b二、求下列各数的算术平方根,并用符号表示出来:(1)(7.4)2;(2)(-3.9)2;(3)2.25;(4)2.Ⅳ.课时小结本节课学习了算术平方根的概念,理解了求一个正数的平方和求算术平方根是互为逆运算,求一个非零数的算术平方根,以及算术平方根的性质,即算术平方根是非负数.Ⅴ.课后作业P27习题1、2
此文档下载收益归作者所有