欢迎来到天天文库
浏览记录
ID:39775103
大小:304.50 KB
页数:5页
时间:2019-07-11
《北京中考四边形集锦》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、北京中考四边形集锦(第二次课)1.已知:如图,梯形ABCD中,AD∥BC,AB=DC,∠BAD、∠CDA的平分线AE、DF分别交直线BC于点E、F.求证:CE=BF.2.如图,在梯形中,∥,,,点是的中点,求线段的长.3.如图,在梯形ABCD中,AD∥BC,AC⊥AB,,AD=DC,E是AB中点,EF∥AC交BC于点F,且EF=,求梯形ABCD的面积.4.已知:如图,在梯形ABCD中,AD∥BC,BD=CD,∠BDC=90°,AD=3,BC=8.求AB的长.ADCBO5..如图,在梯形中,∥,=,=,为边上的任意一点,∥,且交于点.若为边上的中点,则=(用含有,的式子表示);若为
2、边上距点最近的等分点(,且为整数),则=(用含有,,的式子表示).6.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)直接写出线段EG与CG的数量关系;(2)将图1中△BEF绕B点逆时针旋转45º,如图2所示,取DF中点G,连接EG,CG.你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)FBACE图3DFBADCEG图2FBADCEG图17.问题:如图1,在等边三角形ABC内有一点P
3、,且PA=2,PB=,PC=1.求∠BPC度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连接PP′,可得△P′PC是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证).所以∠AP′C=150°,而∠BPC=∠AP′C=150°.进而求出等边△ABC的边长为.问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC度数的大小和正方形ABCD的边长.图2图3图18.如图1,在中,于点,恰为的中点,.(1)求证:;(
4、2)如图2,点在线段上,作于点,连结.求证:;(3)请你在图3中画图探究:当为线段上任意一点(不与点重合)时,作垂直直线,垂足为点,连结.线段、与之间有怎样的数量关系?直接写出你的结论.9.(1)已知:如图1,△中,分别以、为一边向△外作正方形和,直线于,若于,于.判断线段的数量关系,并证明;(2)如图2,梯形中,∥,分别以两腰、为一边向梯形外作正方形和,线段的垂直平分线交线段于点,交于点,若于,于.(1)中结论还成立吗?请说明理由.10.如图10-1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,
5、DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①请直接写出图10-1中线段BG、线段DE的数量关系及所在直线的位置关系;②将图10-1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度,得到如图10-2、如图10-3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图10-2证明你的判断.(2)将原题中正方形改为矩形(如图10-4~10-6),且,试判断(1)①中得到的结论哪个成立,哪个不成立?并写出你的判断,不必证明.(3)在图10-5中,连结、,且,则=
此文档下载收益归作者所有