On Variable Density Compressive Sampling

On Variable Density Compressive Sampling

ID:39772647

大小:1.13 MB

页数:4页

时间:2019-07-11

On Variable Density Compressive Sampling_第1页
On Variable Density Compressive Sampling_第2页
On Variable Density Compressive Sampling_第3页
On Variable Density Compressive Sampling_第4页
资源描述:

《On Variable Density Compressive Sampling》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、IEEESIGNALPROCESSINGLETTERS,VOL.18,NO.10,OCTOBER2011595OnVariableDensityCompressiveSamplingGillesPuy,PierreVandergheynst,SeniorMember,IEEE,andYvesWiaux,Member,IEEEAbstract—IncoherencebetweensparsitybasisandsensingbasisWealsodenote.Finally,weaimatrecov-isanessentialconceptforco

2、mpressivesampling.Inthiscontext,weeringbysolvingthe-minimization1problemadvocateacoherence-drivenoptimizationprocedureforvariabledensitysampling.Theassociatedminimizationproblemissolved(2)byuseofconvexoptimizationalgorithms.Wealsoproposeare-finementofourtechniquewhenpriorinform

3、ationisavailableonthesignalsupportinthesparsitybasis.TheeffectivenessoftheInthissetting,commonstrategiesfocusonuniformrandommethodisconfirmedbynumericalexperiments.Ourresultsalsoselectionoftheindices.Forsignalssparseintheprovideatheoreticalunderpinningtostate-of-the-artvariable

4、den-Diracbasis,auniformrandomselectionofFourierbasisvec-sityFouriersamplingproceduresusedinMRI.torsrepresentsthebestsamplingstrategy.Indeed,theDiracIndexTerms—Compressedsensing,magneticresonanceandFourierbasisareoptimallyincoherent.Naturalsignalsareimaging,variabledensitysampl

5、ing.howeverrathersparseinmultiscalebases,e.g.,waveletbases,notoptimallyincoherentwiththeFourierbasis.Manymeasure-I.INTRODUCTIONmentsarethusneededtoreconstructsuchsignalsaccurately.ThisisforexamplethecaseinmagneticresonanceimagingOMPRESSEDsensingdemonstratesthatsparsesignals(MR

6、I).Toreducethenumberofmeasurements,theauthorsinCcanbesampledthroughlinearandnon-adaptivemeasure-[3]relyonthefactthattheenergyofMRIsignalsisessentiallymentsatasub-Nyquistrate,andstillaccuratelyrecoveredbyconcentratedatlowfrequencies.Theythusproposetoselectmeansofnon-linearitera

7、tivealgorithms.ThetheoryrequiresFourierbasisvectorsaccordingtoavariabledensitysamplingincoherencebetweenthesensingandsparsitybasesandalotofprofileselectingmorelowfrequenciesthanhighfrequencies.workhasthusbeendedicatedtodesignsuchsensingsystemsThisapproachwasshowntodrasticallyen

8、hancethequalityof[1].thereconstructedsignals.Thismethodishowe

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。