Optional sampling

Optional sampling

ID:40086802

大小:99.41 KB

页数:13页

时间:2019-07-20

Optional sampling_第1页
Optional sampling_第2页
Optional sampling_第3页
Optional sampling_第4页
Optional sampling_第5页
资源描述:

《Optional sampling》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、CHAPTER2OptionalsamplingbyJanvanNeerven1.Optionalsampling:discretetimeInthissectionwediscusstheoptionalsamplingtheoremfordiscretesupermartingales.Throughout,welet(;F;P)beafixedprobabilityspace.1.1.Stoppingtimes.Letusfixafiltration(Fn)n2N,whereN=f0;1;2;:::g.DEFINITION2.1.

2、AstoppingtimeisarandomvariableT:!N[f1gwiththepropertythatfT6ng2Fnforalln2N.Forn2N,n>1,wehavefT=ng=fT6ngnfT6n1g.ClearlythisimpliesthatTisastoppingtimeifandonlyiffT=ng2Fnforalln2N[f1g.IfSandTarestoppingtimes,thenS^T:=minfS;TgandS_T:=maxfS;Tgarestoppingtimesaswell.Indee

3、d,thisfollowsfromfS^T6ng=fS6ng[fT6ngandfS_T6ng=fS6ngfT6ng.Inparticular,takingS=k,weseethatT^kisastoppingtimewheneverTisastoppingtimeandk2N.DEFINITION2.2.LetTbeastoppingtime.The-algebraFTisconsistsofallsetsA2FwiththepropertythatAfT6ng2Fnforalln2N.REMARK2.3.LetTbeast

4、oppingtime.IfweputF1:=FthentriviallywehavefT61g2F1,andforallA2FTwehaveAfT61g2F1.Thuswemayalwaysenlargethefiltration(Fn)n2Ntoafiltration(Fn)n2N[f1gandassumethatthedefiningpropertiesinDefinitions2.1and2.2holdforalln2N[f1g.Foralln>1wehaveAfT=ng=(AfT6ng)n(AfT6n1g).Clearl

5、ythisimpliesthatA2FTifandonlyifAfT=ng2Fnforalln2N.FortheconstantstoppingtimeT=k,withk2N,wehaveFT=Fk.Thisrelationextendstok=1,providedwetakeF1:=FasinRemark2.3.PROPOSITION2.4.IfSandTarestoppingtimessatisfyingS6T,thenFSFT.PROOF.LetA2FSandfixn2N.FromS6TwehavefT6ngfS6nga

6、ndthereforeAfT6ng=AfS6ngfT6ng:SinceAfS6ngFnandfT6ng2Fn,itfollowsthatAfT6ng2Fn.Asaparticularcase,notethatFT^jFT^kwheneverTisastoppingtimeandj6kinN.PROPOSITION2.5.IfTisastoppingtime,thenforallF2FTandk2NwehaveFfT6kg2FT^k:122.OPTIONALSAMPLINGPROOF.FirstnotethatF

7、fT6kg2FksinceTisastoppingtime.Henceforalln>kwehave(FfT6kg)fT^k6ng=FfT6kg2FkFn:Ontheotherhand,forn

8、FT)=E(XjFn)almostsurelyonthesetfT=ng,foralln2N;(2)E(XjFT)=XalmostsurelyonthesetfT=1g.PROOF.Weprove(1)and(2)simultaneouslybyp

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。