feature engineering

feature engineering

ID:39771815

大小:1.66 MB

页数:32页

时间:2019-07-11

feature engineering_第1页
feature engineering_第2页
feature engineering_第3页
feature engineering_第4页
feature engineering_第5页
资源描述:

《feature engineering》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、DiscoverFeatureEngineeringHowtoEngineerFeaturesandHowtoGetGoodatItImportanceofFeatureEngineering●Betterfeaturesmeansflexibility.●Betterfeaturesmeanssimplermodels.●Betterfeaturesmeansbetterresults.WhatisFeatureEngineering?●Featureengineeringis●theprocessoftransformingrawdataintofeatures●thatbette

2、rrepresenttheunderlyingproblemtothepredictivemodels●resultinginimprovedmodelaccuracyonunseendata.Sub-ProblemsofFeatureEngineering●FeatureImportance(correlation,randomforest)–Anestimateoftheusefulnessofafeature●FeatureExtraction(PCA)–Theautomaticconstructionofnewfeaturesfromrawdata●FeatureSelecti

3、on(rankingscore,wrapper,LASSO)–Frommanyfeaturestoafewthatareuseful●FeatureConstruction()–Themanualconstructionofnewfeaturesfromrawdata●FeatureLearning–TheautomaticidentificationanduseoffeaturesinrawdataIterativeProcessofFeatureEngineering●Brainstormfeatures●Devisefeatures●Selectfeatures●Evaluate

4、modelsGeneralExamplesofFeatureEngineering●DecomposeCategoricalAttributes–“Item_Color”thatcanbeRed,BlueorUnknown.●DecomposeaDate-Time–2014-09-20T20:45:40Z●ReframeNumericalQuantities–Num_Customer_PurchasesPurchases_Summer,Purchases_FallFeatureselectioninsklearn●Removingfeatureswithlowvariance–Vari

5、anceThreshold●Univariatefeatureselection–Regressionp-values–ClassificationAnovaF-valueVariableRanking●CorrelationCriteria–Pearsoncorrelationcoefficient●SingleVariableClassifiers–ROC(x-FPRy-TPR)AUC●InformationTheoreticRankingCriteria●Noisy(noninformative)features●Applyingunivariatefeatureselectio

6、nbeforetheSVMincreasestheSVMweightattributedtothesignificantfeaturesLimitationsofvariableranking●CanPresumablyRedundantVariablesHelpEachOther?Limitationsofvariableranking●HowDoesCorrelationImpactVariableRedundancy●Limitationsofvariableranking●CanaVariablethatisUselessbyItselfbeUsefulwithOthers?●

7、Featureselectioninsklearn●Recursivefeatureelimination–Allfeature→absoluteweightsarethesmallestarepruned(SVC)●L1-basedfeatureselection–Lasso(higheralphathefewerfeatures)–SVMsandlogistic-regression(smallerCthefewerfeatures)––●

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。