Can we learn to beat the best stock

Can we learn to beat the best stock

ID:39757720

大小:138.48 KB

页数:8页

时间:2019-07-11

Can we learn to beat the best stock_第1页
Can we learn to beat the best stock_第2页
Can we learn to beat the best stock_第3页
Can we learn to beat the best stock_第4页
Can we learn to beat the best stock_第5页
资源描述:

《Can we learn to beat the best stock》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、CanWeLearntoBeattheBestStockAllanBorodin1RanEl-Yaniv2VincentGogan1DepartmentofComputerScienceUniversityofToronto1Technion-IsraelInstituteofTechnology2fbor,vincentg@cs.toronto.edurani@cs.technion.ac.ilAbstractAnovelalgorithmforactivelytradingstocksispresented.Whiletradi-tio

2、naluniversalalgorithms(andtechnicaltradingheuristics)attempttopredictwinnersortrends,ourapproachreliesonpredictablestatisticalrelationsbetweenallpairsofstocksinthemarket.Ourempiricalresultsonhistoricalmarketsprovidestrongevidencethatthistypeoftechni-caltradingcan“beatthema

3、rket”andmoreover,canbeatthebeststockinthemarket.Indoingsoweutilizeanewideaforsmoothingcriticalparametersinthecontextofexpertlearning.1Introduction:ThePortfolioSelectionProblemTheportfolioselection(PS)problemisachallengingproblemformachinelearning,onlinealgorithmsand,ofcour

4、se,computationalfinance.Asiswellknown(e.g.seeLugosi[1])sequencepredictionundertheloglossmeasurecanbeviewedasaspecialcaseofportfo-lioselection,andperhapsmoresurprisingly,fromacertainworstcaseminimaxcriterion,portfolioselectionisnotessentiallyanyharder(thanprediction)asshowni

5、n[2](seealso[1],Thm.20&21).Butthereseemstobeaqualitativedifferencebetweenthepracticalutilityof“universal”sequencepredictionanduniversalportfolioselection.Simplystated,universalsequencepredictionalgorithmsundervariousprobabilisticandworst-casemod-elsworkverywellinpracticewh

6、ereastheknownuniversalportfolioselectionalgorithmsdonotseemtoprovideanysubstantialbenefitoveranaiveinvestmentstrategy(seeSec.4).Amajorpragmaticquestioniswhetherornotacomputerprogramcanconsistentlyout-performthemarket.Acloserinspectionoftheinterestingideasdevelopedininformat

7、iontheoryandonlinelearningsuggeststhatapromisingapproachistoexploitthenaturalvolatilityinthemarketandinparticulartobenefitfromsimpleandratherpersistentstatis-ticalrelationsbetweenstocksratherthantotrytopredictstockpricesor“winners”.Wepresentanon-universalportfolioselectiona

8、lgorithm1,whichdoesnottrytopredictwin-ners.Themotivationbehindouralgorithmistherationaleb

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。