An adaptive k-Nearest Neighbor Text Categorizatioin Strategy

An adaptive k-Nearest Neighbor Text Categorizatioin Strategy

ID:39753025

大小:279.24 KB

页数:12页

时间:2019-07-10

An adaptive k-Nearest Neighbor Text Categorizatioin Strategy_第1页
An adaptive k-Nearest Neighbor Text Categorizatioin Strategy_第2页
An adaptive k-Nearest Neighbor Text Categorizatioin Strategy_第3页
An adaptive k-Nearest Neighbor Text Categorizatioin Strategy_第4页
An adaptive k-Nearest Neighbor Text Categorizatioin Strategy_第5页
资源描述:

《An adaptive k-Nearest Neighbor Text Categorizatioin Strategy》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AnAdaptivek-NearestNeighborTextCategorizationStrategyLIBAOLI,PekingUniversityLUQIN,TheHongKongPolytechnicUniversityandYUSHIWEN,PekingUniversity________________________________________________________________________kisthemostimportantparameterinatextcategorizationsystembasedonthek-nearestneighbor

2、algorithm(kNN).Toclassifyanewdocument,thek-nearestdocumentsinthetrainingsetaredeterminedfirst.Thepredictionofcategoriesforthisdocumentcanthenbemadeaccordingtothecategorydistributionamongtheknearestneighbors.Generallyspeaking,theclassdistributioninatrainingsetisnoteven;someclassesmayhavemoresample

3、sthanothers.Thesystem’sperformanceisverysensitivetothechoiceoftheparameterk.Anditisverylikelythatafixedkvaluewillresultinabiasforlargecategories,andwillnotmakefulluseoftheinformationinthetrainingset.Todealwiththeseproblems,animprovedkNNstrategy,inwhichdifferentnumbersofnearestneighborsfordifferen

4、tcategoriesareusedinsteadofafixednumberacrossallcategories,isproposedinthisarticle.Moresamples(nearestneighbors)willbeusedtodecidewhetheratestdocumentshouldbeclassifiedinacategorythathasmoresamplesinthetrainingset.Thenumbersofnearestneighborsselectedfordifferentcategoriesareadaptivetotheirsamples

5、izeinthetrainingset.Experimentsontwodifferentdatasetsshowthatourmethodsarelesssensitivetotheparameterkthanthetraditionalones,andcanproperlyclassifydocumentsbelongingtosmallerclasseswithalargek.Thestrategyisespeciallyapplicableandpromisingforcaseswhereestimatingtheparameterkviacross-validationisno

6、tpossibleandtheclassdistributionofatrainingsetisskewed.CategoriesandSubjectDescriptors:H.3.3[InformationStorageandRetrieval]:InformationSearchandRetrieval–Informationfiltering;H.3.4[InformationStorageandRetrieval]:SystemsandSoftware–Performanceevaluation(efficiencyandeffectiveness);I.2.6[Artifici

7、alIntelligence]:Learning-Analogies;I.5.1[PatternRecognition]:Models-Statistical;I.5.4[PatternRecognition]:Applications–Textprocessing;GeneralTerms:Algorithms,Experimentation,Measurement,PerformanceAdditionalKeyWordsand

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。