Bag of Tricks for Efficient Text Classification

Bag of Tricks for Efficient Text Classification

ID:39747935

大小:71.69 KB

页数:5页

时间:2019-07-10

Bag of Tricks for Efficient Text Classification_第1页
Bag of Tricks for Efficient Text Classification_第2页
Bag of Tricks for Efficient Text Classification_第3页
Bag of Tricks for Efficient Text Classification_第4页
Bag of Tricks for Efficient Text Classification_第5页
资源描述:

《Bag of Tricks for Efficient Text Classification》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、BagofTricksforEfficientTextClassificationArmandJoulinEdouardGravePiotrBojanowskiTomasMikolovFacebookAIResearch{ajoulin,egrave,bojanowski,tmikolov}@fb.comAbstractextensionofthesemodelstodirectlylearnsentencerepresentations.WeshowthatbyincorporatingThispaperproposesasimpleandefficientap-additionalstatist

2、icssuchasusingbagofn-grams,proachfortextclassificationandrepresenta-tionlearning.OurexperimentsshowthatourwereducethegapinaccuracybetweenlinearandfasttextclassifierfastTextisoftenonpardeepmodels,whilebeingmanyordersofmagnitudewithdeeplearningclassifiersintermsofac-faster.curacy,andmanyordersofmagnitude

3、fasterOurworkiscloselyrelatedtostan-fortrainingandevaluation.Wecantraindardlineartextclassifiers(Joachims,1998;fastTextonmorethanonebillionwordsMcCallumandNigam,1998;Fanetal.,2008).inlessthantenminutesusingastandardmul-SimilartoWangandManning(2012),ourmoti-ticoreCPU,andclassifyhalfamillionsen-tencesa

4、mong312Kclassesinlessthanavationistoexploresimplebaselinesinspiredbyminute.modelsusedforlearningunsupervisedwordrepre-sentations.AsopposedtoLeandMikolov(2014),1Introductionourapproachdoesnotrequiresophisticatedinfer-enceattesttime,makingitslearnedrepresentationsBuildinggoodrepresentationsfortextclas

5、si-easilyreusableondifferentproblems.Weevaluateficationisanimportanttaskwithmanyap-thequalityofourmodelontwodifferenttasks,plications,suchaswebsearch,informationnamelytagpredictionandsentimentanalysis.retrieval,rankinganddocumentclassifica-tion(Deerwesteretal.,1990;PangandLee,2008).2Modelarchitecturea

6、rXiv:1607.01759v2[cs.CL]7Jul2016Recently,modelsbasedonneuralnetworkshavebecomeincreasinglypopularforcomputingAsimpleandefficientbaselineforsentencesentencerepresentations(Bengioetal.,2003;classificationistorepresentsentencesasbagofCollobertandWeston,2008).Whilethesewords(BoW)andtrainalinearclassifier,f

7、ormodelsachieveverygoodperformanceinexamplealogisticregressionorsupportvec-practice(Kim,2014;ZhangandLeCun,2015;tormachine(Joachims,1998;Fanetal.,2008).Zhangetal.,2015),theytendtoberelativelyslowHowev

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。