福建专用2019高考数学一轮复习课时规范练23解三角形理新人教A版

福建专用2019高考数学一轮复习课时规范练23解三角形理新人教A版

ID:39721804

大小:649.01 KB

页数:6页

时间:2019-07-10

福建专用2019高考数学一轮复习课时规范练23解三角形理新人教A版_第1页
福建专用2019高考数学一轮复习课时规范练23解三角形理新人教A版_第2页
福建专用2019高考数学一轮复习课时规范练23解三角形理新人教A版_第3页
福建专用2019高考数学一轮复习课时规范练23解三角形理新人教A版_第4页
福建专用2019高考数学一轮复习课时规范练23解三角形理新人教A版_第5页
资源描述:

《福建专用2019高考数学一轮复习课时规范练23解三角形理新人教A版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课时规范练23 解三角形一、基础巩固组1.△ABC的内角A,B,C的对边分别为a,b,c.已知a=,b=2,A=60°,则c=(  )A.B.1C.D.22.在△ABC中,已知acosA=bcosB,则△ABC的形状是(  )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形3.已知△ABC的三个内角A,B,C依次成等差数列,BC边上的中线AD=,AB=2,则S△ABC=(  )A.3B.2C.3D.64.在△ABC中,B=,BC边上的高等于BC,则cosA=(  )A.B.C.-D.-5.在△ABC

2、中,A,B,C所对的边分别为a,b,c,若bcosA+acosB=c2,a=b=2,则△ABC的周长为(  )A.7.5B.7C.6D.5〚导学号21500534〛6.已知△ABC的三个内角A,B,C的对边分别为a,b,c,且满足=sinA-sinB,则C=     . 7.在△ABC中,角A,B,C的对边分别为a,b,c,且2c·cosB=2a+b,若△ABC的面积为S=c,则ab的最小值为     . 8.如图所示,长为3.5m的木棒AB斜靠在石堤旁,木棒的一端A在离堤足C处1.4m的地面上,另一端B在离堤足C处2.8

3、m的石堤上,石堤的倾斜角为α,则坡度值tanα=.9.(2017全国Ⅲ,理17)△ABC的内角A,B,C的对边分别为a,b,c.已知sinA+cosA=0,a=2,b=2.(1)求c;(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.6〚导学号21500535〛10.已知岛A南偏西38°方向,距岛A3nmile的B处有一艘缉私艇.岛A处的一艘走私船正以10nmile/h的速度向岛北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5h能截住该走私船?二、综合提升组11.△ABC的内角A,B,C的对边分别

4、为a,b,c.已知sinB+sinA(sinC-cosC)=0,a=2,c=,则C=(  )A.B.C.D.12.在△ABC中,D为BC边上的一点,AD=BD=5,DC=4,∠BAD=∠DAC,则AC=(  )A.9B.8C.7D.613.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点,从点A测得点M的仰角∠MAN=60°,点C的仰角∠CAB=45°以及∠MAC=75°;从点C测得∠MCA=60°.已知山高BC=100m,则山高MN=     m. 14.(2017河南郑州一中质检一,理17)已知△ABC外接圆

5、直径为,角A,B,C所对的边分别为a,b,c,C=60°.(1)求的值;(2)若a+b=ab,求△ABC的面积.三、创新应用组15.(2018福建泉州期末,理10)已知点P是函数f(x)=Asin(ωx+φ)(φ>0)图象上的一个最高点,B,C是与P相邻的两个最低点.若cos∠BPC=,则f(x)的图象的对称中心可以是(  )A.(0,0)B.(1,0)C.(2,0)D.(3,0)16.(2017宁夏银川九中二模,理17)已知函数f(x)=sinωx-2sin2+m(ω>0)的最小正周期为3π,当x∈[0,π]时,函数f(

6、x)的最小值为0.(1)求函数f(x)的表达式;(2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A-C),求sinA的值.6〚导学号21500536〛课时规范练23 解三角形1.B 由已知及余弦定理,得3=4+c2-2×2×c,整理,得c2-2c+1=0,解得c=1.故选B.2.D ∵acosA=bcosB,∴sinAcosA=sinBcosB,∴sin2A=sin2B,∴A=B,或2A+2B=180°,即A+B=90°,∴△ABC为等腰三角形或直角三角形.故选D.3.C ∵A,B,C成等差数列,∴B

7、=60°.在△ABD中,由余弦定理,得AD2=AB2+BD2-2AB·BD·cosB,即7=4+BD2-2BD,∴BD=3或-1(舍去),可得BC=6,∴S△ABC=AB·BC·sinB=2×6=34.C (方法一)设BC边上的高为AD,则BC=3AD.结合题意知BD=AD,DC=2AD,所以AC=AD,AB=AD.由余弦定理,得cosA===-,故选C.(方法二)如图,在△ABC中,AD为BC边上的高,由题意知∠BAD=设∠DAC=α,则∠BAC=α+∵BC=3AD,BD=AD.∴DC=2AD,AC=AD.∴sinα=,

8、cosα=cos∠BAC=cos=cosαcos-sinαsin(cosα-sinα)==-,故选C.5.D ∵bcosA+acosB=c2,a=b=2,∴由余弦定理可得b+a=c2,整理可得2c2=2c3,解得c=1,则△ABC的周长为a+b+c=2+2+1=5.故选D.6 在△ABC中,=sinA-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。