时间序列分析预测法

时间序列分析预测法

ID:39719832

大小:304.01 KB

页数:46页

时间:2019-07-10

时间序列分析预测法_第1页
时间序列分析预测法_第2页
时间序列分析预测法_第3页
时间序列分析预测法_第4页
时间序列分析预测法_第5页
资源描述:

《时间序列分析预测法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第九章时间序列分析预测法时间序列分析概念移动平均法概念与应用指数平滑法概念与应用马尔可夫预测法与季节分析预测法概念与应用定量预测概述定量预测又称数学模型预测法。它是运用一定的统计和数学方法,通过建立数学分析模型来描述和预测事物变化发展规律的一种预测方法。因此有两个明显的特点:受人的主观因素影响较小,结果比较客观;对数据的要求、预测者专业能力的要求比较高由时间序列预测方法和回归分析预测方法两大类组成。定量预测方法时间序列预测法回归分析预测法算术平均预测(简单、移动、指数平滑)季节分析预测(水平、趋势变动)马尔可夫预测(市场占有率预测)趋势预测(直线拟合、指数曲线拟合)一元线型回归预测多元线

2、型回归预测非线性回归预测自相关回归预测最早的时间序列分析可以追溯到7000年前的古埃及。古埃及人把尼罗河涨落的情况逐天记录下来,就构成所谓的时间序列。对这个时间序列长期的观察使他们发现尼罗河的涨落非常有规律。由于掌握了尼罗河泛滥的规律,使得古埃及的农业迅速发展,从而创建了埃及灿烂的史前文明。按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。9.1时间序列预测法概述时间序列预测方法,是把统计资料按时间发生的先后进行排序得出的一连串数据,利用该数据序列外推到预测对象未来的发展趋势。一般可分为确

3、定性时间序列预测法和随机时间序列预测法。确定性时间序列法有:移动平均法、指数平滑法、差分指数平滑法、自适应过滤法、直线模型预测法、成长曲线模型预测和季节变动预测法等等。随机时间序列是通过建立随机时间序列模型来预测,方法和数据要求都很高,精度也很高,应用非常广泛。时间序列预测法的优缺点优点:在分析现在、过去、未来的联系时,以及未来的结果与过去、现在的各种因素之间的关系时,效果比较好。数据处理时,并不十分复杂缺点:反映了对象线性的、单向的联系预测稳定的、在时间方面稳定延续的过程并不适合进行长期预测9.2移动平均预测法9.2.1算术平均数法(MethodofSimpleAverage)大前前昨

4、今明预测模型:适用范围:预测对象的历史数据呈水平型变动状态,逐期增长量大体相同的情况;短期预测;可推广应用趋势型变动的历史数据。已知未知1999~2006年我国水电消费量在能源消费总量中所占的比重如下表所示,使用算术平均法预测2007年水电消费量在能源消费总量中所占的比重。年份19992000200120022003200420052006比重(%)4.95.14.84.95.25.76.15.9解:根据预测模型即我国2007年水电消费在能源消费总量中所占比重为5.3%。案例9.2.2简单移动平均预测移动平均预测(MethodofSingleMovingAverage)是利用过去若干期实

5、际的平均值,来预测当期的值。方法上与算术平均法类似。比如,1992~1996年我国市镇人口在总人口所占的比重如表所示,试推广应用移动平均法预测1997年我国市镇人口在总人口中所占的比重。年份19921993199419951996比重(%)27.6328.1428.6229.0429.371992~1996年市镇人口在总人口中所占比重分别为27.63%、28.14%、28.62%、29.04%和29.37%,平均比重为:则1997年市镇人口在总人口中所占比重为:28.56%一般可以通过比较预测均方差(MSE)和绝对均差(MAE),来分析预测的误差。简单移动平均预测的明显缺点是:它假设平均

6、数内的各项观察值对于未来都具有相同的影响,但一般在实际中,往往是越接近预测期的观察值对未来的影响越大,因此又有其它方法来修正。9.2.3加权移动平均预测根据时间顺序排列的历史数据,每个数据对预测值的重要性是不同的,将各个数据赋予不同的权重,可以更准确的预测。往往会对于离预测期越近的数据赋予越大的权重。这样可以更接近事物真实的发展趋势。案例2001~2006年我国原煤占能源生产总量的比重如表所示,若给予2001~2006年原煤占能源生产总量比重的权数分别为1、2、3、4、5、6,试预测2007年原煤所占的比重。年份200120022003200420052006比重(%)74.174.37

7、4.074.675.374.8根据预测模型可得:即2007年我国原煤占能源生产总量的比重为74.7%可以看出,加权移动平均的特点是:强调时间序列近期的变动对未来具有较大影响,从而更为合理。但是有时会受加权系数选择的影响。总之,简单移动平均和加权平均最适用于没有明显趋势的、比较平稳的时间序列,如果时间序列明显表现出某种趋势性特征,或者波动很大,预测效果就会很差。趋势性数列平稳性数列9.3指数平滑预测法指数平滑(MethodofExpo

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。