Data Stream Analisys and Data Mining With Storm

Data Stream Analisys and Data Mining With Storm

ID:39714613

大小:546.90 KB

页数:6页

时间:2019-07-09

Data Stream Analisys and Data Mining With Storm_第1页
Data Stream Analisys and Data Mining With Storm_第2页
Data Stream Analisys and Data Mining With Storm_第3页
Data Stream Analisys and Data Mining With Storm_第4页
Data Stream Analisys and Data Mining With Storm_第5页
资源描述:

《Data Stream Analisys and Data Mining With Storm》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MLDMWORKSHOP,JANUARY20131DataStreamAnalisysandDataMiningWithStormGregorMajcen,MihaZidarAbstract—TwitterStormisapowerfuldistributedreal-timeonStormthenwewilltakethatknowledgetohypothesiseadataprocessingsolutionwithawiderangeofusage.Inthissolutionforthestockmarketprediction.paperwear

2、egoingtotakealookathowwecanutilizeTwitterStorm’spowerfordataminingonstreamsofdata.Themainfocusofthispaperisreal-timedataprocessingandonlinedataII.TWITTERSTORMmining.Stormisanopensourcedistributedandfault-tolerantIndexTerms—onlinelearning,continuousdata,datamining,real-timecomputati

3、onsystemthatiswriteninclojureanddistributedsystems,horizontalscaling,batchprocessingrunsonJVM.Itprovidesahighabstractionlayerwithwhichwecanruncomplexcomputationsonaclusterofcomputers.StormprovidesuserswithageneralframeworkI.INTRODUCTIONforperformingcomputataionsondatastreamsinreal-

4、time,ODAYwearegeneratingmoredatapersecondthansimilartohowHadoopprovidesuserswithaframeworkforTeverbeforeandtheamountofdataproducedisonlyperformingbatchprocessingoperations.Becauseitrunsonincreasingovertime.DataonitsownisnotthatusefulfortopofZookeeperandhasagoodmessagingsystemusingu

5、sunlesswecanextractinformationfromitandthespeedtupplesofdataitprovidesagoodalternativetomanagingofgatheringthatinformationisbecommingmoreandmoreyourownclusterwithqueuesandworkes.valuable.Thisiswherethereal-timedataprocessingcomesin.BigcompanieslikeTwitter,Groupon,spider.ioandothers

6、Stormcanbeusedforstreamprocessing,processingmes-areusingTwitterStormtoprovideabetteruserexperience.sages,updatingdatabases,updatingonlinemachinelearn-ingmodelsinreal-time.OtherusesalsoincludecontinuousInthelastfewyearsdataprocessinghascomealongwaycomputation,doingacontinuousqueryon

7、datastreamsandwithserviceslikeMapReduce,AmazonEMR,Hadoop,andstreamingouttheresultstousersastheyarecomputed,andrelatedtechologies.AlloftheseweremadetohandlemassivefordistributedRPC.amountsofdata,andtheydothatveryaffectively.Butlatelytheirweaknessisshowingintheirlackofreal-timeproces

8、sing.A.StormstructureNowsp

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。