数学建模课件--稳定性模型

数学建模课件--稳定性模型

ID:39710872

大小:772.50 KB

页数:46页

时间:2019-07-09

数学建模课件--稳定性模型_第1页
数学建模课件--稳定性模型_第2页
数学建模课件--稳定性模型_第3页
数学建模课件--稳定性模型_第4页
数学建模课件--稳定性模型_第5页
资源描述:

《数学建模课件--稳定性模型》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第六章稳定性模型6.1捕鱼业的持续收获6.2军备竞赛6.3种群的相互竞争6.4种群的相互依存6.5种群的弱肉强食稳定性模型对象仍是动态过程,而建模目的是研究时间充分长以后过程的变化趋势——平衡状态是否稳定。不求解微分方程,而是用微分方程稳定性理论研究平衡状态的稳定性。6.1捕鱼业的持续收获再生资源(渔业、林业等)与非再生资源(矿业等)再生资源应适度开发——在持续稳产前提下实现最大产量或最佳效益。问题及分析在捕捞量稳定的条件下,如何控制捕捞使产量最大或效益最佳。如果使捕捞量等于自然增长量,渔场鱼量将保持不变,则捕捞量稳定。背景产量模型假设无捕捞时鱼的自然增长服从Logisti

2、c规律单位时间捕捞量与渔场鱼量成正比建模捕捞情况下渔场鱼量满足不需要求解x(t),只需知道x(t)稳定的条件r~固有增长率,N~最大鱼量h(x)=Ex,E~捕捞强度x(t)~渔场鱼量一阶微分方程的平衡点及其稳定性一阶非线性(自治)方程F(x)=0的根x0~微分方程的平衡点设x(t)是方程的解,若从x0某邻域的任一初值出发,都有称x0是方程(1)的稳定平衡点不求x(t),判断x0稳定性的方法——直接法(1)的近似线性方程产量模型平衡点稳定性判断x0稳定,可得到稳定产量x1稳定,渔场干枯E~捕捞强度r~固有增长率产量模型在捕捞量稳定的条件下,控制捕捞强度使产量最大图解法P的横坐

3、标x0~平衡点y=rxhPx0y0y=h(x)=ExxNy=f(x)P的纵坐标h~产量产量最大f与h交点Phmx0*=N/2P*y=E*x控制渔场鱼量为最大鱼量的一半效益模型假设鱼销售价格p单位捕捞强度费用c单位时间利润在捕捞量稳定的条件下,控制捕捞强度使效益最大.稳定平衡点求E使R(E)最大渔场鱼量收入T=ph(x)=pEx支出S=cEEsS(E)T(E)0rE捕捞过度封闭式捕捞追求利润R(E)最大开放式捕捞只求利润R(E)>0R(E)=0时的捕捞强度(临界强度)Es=2ER临界强度下的渔场鱼量捕捞过度ERE*令=06.2军备竞赛描述双方(国家或国家集团)军备竞赛过程解释

4、(预测)双方军备竞赛的结局假设1)由于相互不信任,一方军备越大,另一方军备增加越快;2)由于经济实力限制,一方军备越大,对自己军备增长的制约越大;3)由于相互敌视或领土争端,每一方都存在增加军备的潜力。进一步假设1)2)的作用为线性;3)的作用为常数目的建模军备竞赛的结局微分方程的平衡点及其稳定性x(t)~甲方军备数量,y(t)~乙方军备数量,~本方经济实力的制约;k,l~对方军备数量的刺激;g,h~本方军备竞赛的潜力。t时的x(t),y(t)线性常系数微分方程组的平衡点及其稳定性平衡点P0(x0,y0)=(0,0)~代数方程的根若从P0某邻域的任一初值出发,都有称

5、P0是微分方程的稳定平衡点记系数矩阵特征方程特征根线性常系数微分方程组的平衡点及其稳定性特征根平衡点P0(0,0)微分方程一般解形式平衡点P0(0,0)稳定平衡点P0(0,0)不稳定1,2为负数或有负实部p>0且q>0p<0或q<0平衡点稳定性判断系数矩阵平衡点(x0,y0)稳定的条件模型军备竞赛模型的定性解释双方军备稳定(时间充分长后趋向有限值)的条件双方经济制约大于双方军备刺激时,军备竞赛才会稳定,否则军备将无限扩张。平衡点2)若g=h=0,则x0=y0=0,在>kl下x(t),y(t)0,即友好邻国通过裁军可达到永久和平。模型,~本方经济实力的制约;k,l

6、~对方军备数量的刺激;g,h~本方军备竞赛的潜力。3)若g,h不为零,即便双方一时和解,使某时x(t),y(t)很小,但因,也会重整军备。4)即使某时一方(由于战败或协议)军备大减,如x(t)=0,也会因使该方重整军备,即存在互不信任()或固有争端()的单方面裁军不会持久。模型的定性解释,~本方经济实力的制约;k,l~对方军备数量的刺激;g,h~本方军备竞赛的潜力。模型6.3种群的相互竞争一个自然环境中有两个种群生存,它们之间的关系:相互竞争;相互依存;弱肉强食。当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大

7、容量。建立数学模型描述两个种群相互竞争的过程,分析产生这种结局的条件。模型假设有甲乙两个种群,它们独自生存时数量变化均服从Logistic规律;两种群在一起生存时,乙对甲增长的阻滞作用与乙的数量成正比;甲对乙有同样的作用。对于消耗甲的资源而言,乙(相对于N2)是甲(相对于N1)的1倍。对甲增长的阻滞作用,乙大于甲乙的竞争力强模型模型分析(平衡点及其稳定性)(二阶)非线性(自治)方程的平衡点及其稳定性平衡点P0(x10,x20)~代数方程的根若从P0某邻域的任一初值出发,都有称P0是微分方程的稳定平衡点模型判断P0

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。