欢迎来到天天文库
浏览记录
ID:39692723
大小:305.50 KB
页数:24页
时间:2019-07-09
《排列组合应用题解法综述》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、排列组合应用题解法综述计数问题中排列组合问题是最常见的,由于其解法往往是构造性的,因此方法灵活多样,不同解法导致问题难易变化也较大,而且解题过程出现“重复”和“遗漏”的错误较难自检发现。因而对这类问题归纳总结,并把握一些常见解题模型是必要的。基本原理组合排列排列数公式组合数公式组合数性质应用问题知识结构网络图:名称内容分类原理分步原理定义相同点不同点两个原理的区别与联系:做一件事或完成一项工作的方法数直接(分类)完成间接(分步骤)完成做一件事,完成它可以有n类办法,第一类办法中有m1种不同的方法,第二类办法中有m2种不同的方法…,第n类办法中有mn种不同的方法,那么
2、完成这件事共有N=m1+m2+m3+…mn种不同的方法做一件事,完成它可以有n个步骤,做第一步中有m1种不同的方法,做第二步中有m2种不同的方法……,做第n步中有mn种不同的方法,那么完成这件事共有N=m1·m2·m3·…·mn种不同的方法.1.排列和组合的区别和联系:名称排列组合定义种数符号计算公式关系性质,从n个不同元素中取出m个元素,按一定的顺序排成一列从n个不同元素中取出m个元素,把它并成一组所有排列的的个数所有组合的个数一、把握分类原理、分步原理是基础例1如图,某电子器件是由三个电阻组成的回路,其中有6个焊接点A,B,C,D,E,F,如果某个焊接点脱落,整
3、个电路就会不通。现发现电路不通了,那么焊接点脱落的可能性共有()(A)63种(B)64种(C)6种(D)36种分析:由加法原理可知由乘法原理可知2×2×2×2×2×2-1=63小结:本题主要考查了二个原理、分类讨论的思想。以物理问题为背景(或其它背景如以英语单词)的排列、组合应用题,显得小巧有新意.练习1在今年国家公务员录用中,某市农业局准备录用文秘人员二名,农业企业管理人员和农业法制管理人员各一名,报考农业局公务人员的考生有10人,则可能出现的录用情况有____种(用数字作答)。解法1:解法2:本题考查了乘法原理或先组后排。高考突出考查运算能力,排列、组合的选择填
4、空题都要求以数字作答,同学们千万要注意。二、注意区别“恰好”与“至少”例2从6双不同颜色的手套中任取4只,其中恰好有一双同色的手套的不同取法共有()(A)480种(B)240种(C)180种(D)120种小结:“恰好有一个”是“只有一个”的意思。“至少有一个”则是“有一个或一个以上”,可用分类讨论法求解,它也是“没有一个”的反面,故可用“排除法”。解:练习2从6双不同颜色的手套中任取4只,其中至少有一双同色手套的不同取法共有____种解:三、特殊元素(或位置)优先安排例3将5列车停在5条不同的轨道上,其中a列车不停在第一轨道上,b列车不停在第二轨道上,那么不同的停放
5、方法有()(A)120种(B)96种(C)78种(D)72种解:练习3从7盆不同的盆花中选出5盆摆放在主席台前,其中有两盆花不宜摆放在正中间,则一共有_____种不同的摆放方法(用数字作答)。解:小结:1、“在”与“不在”可以相互转化。解决某些元素在某些位置上用“定位法”,解决某些元素不在某些位置上一般用“间接法”或转化为“在”的问题求解。2、排列组合应用题极易出现“重”、“漏”现象,而重”、“漏”错误常发生在该不该分类、有无次序的问题上。为了更好地防“重”堵“漏”,在做题时需认真分析自己做题思路,也可改变解题角度,利用一题多解核对答案四、“相邻”用“捆绑”,“不邻
6、”就“插空”例4七人排成一排,甲、乙两人必须相邻,且甲、乙都不与丙相邻,则不同的排法有()种960种(B)840种(C)720种(D)600种解:另解:小结:以元素相邻为附加条件的应把相邻元素视为一个整体,即采用“捆绑法”;以某些元素不能相邻为附加条件的,可采用“插空法”。“插空”有同时“插空”和有逐一“插空”,并要注意条件的限定.练习4某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有()(A)种(B)种(C)种(D)种解:五、混合问题,先“组”后“排”例5对某种产品
7、的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?解:由题意知前5次测试恰有4次测到次品,且第5次测试是次品。故有:种可能练习5某学习小组有5个男生3个女生,从中选3名男生和1名女生参加三项竞赛活动,每项活动至少有1人参加,则有不同参赛方法______种.解:采用先组后排方法:小结:本题涉及一类重要问题:问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。六、分清排列、组合、等分的算法区别例6(1)今有10件不同奖品,从中选6件分给甲一件,乙二件和丙三件,有多少种
此文档下载收益归作者所有