天津市武清区杨村第三中学2019届高三数学上学期第二次月试题理

天津市武清区杨村第三中学2019届高三数学上学期第二次月试题理

ID:39690064

大小:3.03 MB

页数:14页

时间:2019-07-09

天津市武清区杨村第三中学2019届高三数学上学期第二次月试题理_第1页
天津市武清区杨村第三中学2019届高三数学上学期第二次月试题理_第2页
天津市武清区杨村第三中学2019届高三数学上学期第二次月试题理_第3页
天津市武清区杨村第三中学2019届高三数学上学期第二次月试题理_第4页
天津市武清区杨村第三中学2019届高三数学上学期第二次月试题理_第5页
资源描述:

《天津市武清区杨村第三中学2019届高三数学上学期第二次月试题理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、天津市武清区杨村第三中学2019届高三数学上学期第二次月试题理一、选择题(共8小题;共40分)1.已知全集,集合,,图中阴影部分所表示的集合为A.B.C.D.2.设变量,满足约束条件则的最小值是A.B.C.D.3.若按右图算法流程图运行后,输出的结果是,则输入的的值可以是A.B.C.D.4.设,则“”是“”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.已知,,,是奇函数,直线与函数的图像的两个相邻交点的横坐标之差的绝对值为,则()A.在上单调递减B.在上单调递减

2、C.在上单调递增D.在上单调递增6.已知为定义在上的函数,若对任意两个不相等的正数,,都有,记,,,则14A.B.C.D.7.已知双曲线的左、右焦点分别为,,为坐标原点,是双曲线在第一象限上的点,,直线交双曲线于另一点,若,且,则双曲线的离心率为A.B.C.D.8.已知函数,若方程有四个不同的解,,,,且,则的取值范围是A.B.C.D.二、填空题(共6小题;共30分)9.若复数满足,其中为虚数单位,为复数的共轭复数,则复数的模为 .10.一个四棱锥的底面是平行四边形,三视图如图,则体积为 11.曲

3、线与直线,所围成的区域的面积为 .12.设等差数列,的前项和分别为,若对任意自然数都有,则的值为 .13.如图,在中,若,,,则的值为 .1414.已知函数,其中.若存在实数,使得关于的方程有三个不同的根,则的取值范围是 .三、解答题(共6小题;共80分)15.已知函数的周期为,且过点.(1)求函数的表达式;(2)求函数在区间上的值域.16.如图:四棱锥底面为一直角梯形,,,,,是中点.(1)求证:平面;(2)求证:.17.设数列满足,.(1)求数列的通项公式;(2)若,求数列的前项和.1418.

4、如图,正方形的中心为,四边形为矩形,,点为的中点,.(1)求证:;(2)求二面角的正弦值;(3)设为线段上的点,且,求直线和平面所成角的正弦值.1419.设椭圆的左焦点为,右顶点为,离心率为.已知是抛物线的焦点,到抛物线的准线的距离为.(1)求椭圆的方程和抛物线的方程;(2)设上两点,关于轴对称,直线与椭圆相交于点(异于),直线与轴相交于点.若的面积为,求直线的方程.20.已知函数,.(Ⅰ)求函数在区间[1,2]上的最大值;(Ⅱ)设在(0,2)内恰有两个极值点,求实数m的取值范围;(Ⅲ)设,方程在

5、区间[1,e]有解,求实数m的取值范围.14答案第一部分1.A2.B3.B【解析】,;,;,;,;,此时需终止循环.故.4.A5.A【解析】由,可知,因为且,可得,,即,所以,;,代入.所以或,,所以.6.C【解析】因为是定义在上的函数,对任意两个不相等的正数,,都有,所以函数是上的减函数,因为,,,所以,所以.7.B【解析】由题意,,由双曲线的定义可得,,可得,,由四边形为平行四边形,又,可得,在三角形中,由余弦定理可得,14即有,即,可得,即.8.D【解析】提示:由已知可得,,,为关于的函数在

6、上为增函数,第二部分9.10.该四棱锥的高为,底面边长为,高为的平行四边形,所以四棱锥的体积为.11.12.【解析】由等差数列的性质和求和公式可得:13.【解析】方法一:由余弦定理得,,所以,所以,所以.方法二:如图,以所在直线为轴、线段的中垂线为轴,建立平面直角坐标系,14由方法一知,,,,所以,,所以.14.【解析】由题意方程有三个不同的根,即直线与函数的图象有三个不同的交点.作出函数的图象,如图所示.若存在实数,使方程有三个不同的根,则,即.又因为,所以,即的取值范围为.第三部分15.(1)

7、因为,所以,又过点,所以,解得,因为,,所以函数的表达式为.      (2)因为,所以,所以,14所以,因此函数在区间上的值域为.16.(1)因为,所以,又因为,,,,所以,因为,所以平面.      (2)取的中点为,连接,因为为的中点,所以为的中位线,所以,,又因为,,所以,并且,所以四边形为平行四边形,所以,因为,所以.17.(1)由已知,当时,14因为,即关系式也成立,所以数列的通项公式.      (2)由,得,而,两式相减,可得,,所以.18.(1)取中点,连接,,因为矩形,所以且,

8、因为,是中点,所以是的中位线,所以且.因为是正方形中心,所以,所以且,所以四边形是平行四边形,所以.14因为,,所以.      (2)如图所示建立空间直角坐标系,,,,,设面的法向量,得:所以.因为面,所以面的法向量,,,二面角的正弦值为.      (3)因为,所以,因为,所以.设直线和平面所成角为,14.所以直线和平面所成角的正弦值为.19.(1)设的坐标为,依题意可得解得,,,于是.所以,椭圆的方程为,抛物线的方程为.      (2)直线的方程为,设直线的方程为,联立方程

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。