全国通用版2019高考数学二轮复习板块四考前回扣回扣8函数与导数学案文

全国通用版2019高考数学二轮复习板块四考前回扣回扣8函数与导数学案文

ID:39682354

大小:219.01 KB

页数:12页

时间:2019-07-09

全国通用版2019高考数学二轮复习板块四考前回扣回扣8函数与导数学案文_第1页
全国通用版2019高考数学二轮复习板块四考前回扣回扣8函数与导数学案文_第2页
全国通用版2019高考数学二轮复习板块四考前回扣回扣8函数与导数学案文_第3页
全国通用版2019高考数学二轮复习板块四考前回扣回扣8函数与导数学案文_第4页
全国通用版2019高考数学二轮复习板块四考前回扣回扣8函数与导数学案文_第5页
资源描述:

《全国通用版2019高考数学二轮复习板块四考前回扣回扣8函数与导数学案文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、回扣8 函数与导数1.函数的定义域和值域(1)求函数定义域的类型和相应方法①若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围;②若已知f(x)的定义域为[a,b],则f(g(x))的定义域为不等式a≤g(x)≤b的解集;反之,已知f(g(x))的定义域为[a,b],则f(x)的定义域为函数y=g(x)(x∈[a,b])的值域.(2)常见函数的值域①一次函数y=kx+b(k≠0)的值域为R;②二次函数y=ax2+bx+c(a≠0):当a>0时,值域为,当a<0时,值域为;③反比例

2、函数y=(k≠0)的值域为{y∈R

3、y≠0}.2.函数的奇偶性、周期性(1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x(定义域关于原点对称),都有f(-x)=-f(x)成立,则f(x)为奇函数(都有f(-x)=f(x)成立,则f(x)为偶函数).(2)周期性是函数在其定义域上的整体性质,一般地,对于函数f(x),如果对于定义域内的任意一个x的值,若f(x+T)=f(x)(T≠0),则f(x)是周期函数,T是它的一个周期.3.关于函数周期性、对称性的结论12(1)函数的周期性①若函数f

4、(x)满足f(x+a)=f(x-a),则f(x)为周期函数,2a是它的一个周期;②设f(x)是R上的偶函数,且图象关于直线x=a(a≠0)对称,则f(x)是周期函数,2a是它的一个周期;③设f(x)是R上的奇函数,且图象关于直线x=a(a≠0)对称,则f(x)是周期函数,4a是它的一个周期.(2)函数图象的对称性①若函数y=f(x)满足f(a+x)=f(a-x),即f(x)=f(2a-x),则f(x)的图象关于直线x=a对称;②若函数y=f(x)满足f(a+x)=-f(a-x),即f(x)=-f(

5、2a-x),则f(x)的图象关于点(a,0)对称;③若函数y=f(x)满足f(a+x)=f(b-x),则函数f(x)的图象关于直线x=对称.4.函数的单调性函数的单调性是函数在其定义域上的局部性质.①单调性的定义的等价形式:设任意x1,x2∈[a,b],那么(x1-x2)[f(x1)-f(x2)]>0⇔>0⇔f(x)在[a,b]上是增函数;(x1-x2)[f(x1)-f(x2)]<0⇔<0⇔f(x)在[a,b]上是减函数.②若函数f(x)和g(x)都是减函数,则在公共定义域内,f(x)+g(x)是

6、减函数;若函数f(x)和g(x)都是增函数,则在公共定义域内,f(x)+g(x)是增函数;根据同增异减判断复合函数y=f(g(x))的单调性.5.函数图象的基本变换(1)平移变换y=f(x)y=f(x-h),y=f(x)y=f(x)+k.(2)伸缩变换y=f(x)y=f(ωx),y=f(x)y=Af(x).12(3)对称变换y=f(x)y=-f(x),y=f(x)y=f(-x),y=f(x)y=-f(-x).6.准确记忆指数函数与对数函数的基本性质(1)定点:y=ax(a>0,且a≠1)恒过(0,

7、1)点;y=logax(a>0,且a≠1)恒过(1,0)点.(2)单调性:当a>1时,y=ax在R上单调递增;y=logax在(0,+∞)上单调递增;当0

8、存在零点;③数形结合法:尤其是方程两端对应的函数类型不同时多用此法求解.8.导数的几何意义(1)f′(x0)的几何意义:曲线y=f(x)在点(x0,f(x0))处的切线的斜率,该切线的方程为y-f(x0)=f′(x0)·(x-x0).(2)切点的两大特征:①在曲线y=f(x)上;②在切线上.9.利用导数研究函数的单调性(1)求可导函数单调区间的一般步骤①求函数f(x)的定义域;②求导函数f′(x);③由f′(x)>0的解集确定函数f(x)的单调增区间,由f′(x)<0的解集确定函数f(x)的单调减

9、区间.(2)由函数的单调性求参数的取值范围①若可导函数f(x)在区间M上单调递增,则f′(x)≥0(x∈M)恒成立;若可导函数f(x)在区间M上单调递减,则f′(x)≤0(x∈M)恒成立;②若可导函数在某区间上存在单调递增(减)区间,f′(x)>0(或f′(x)<0)在该区间上存在解集;③若已知f(x)在区间I上的单调性,区间I中含有参数时,可先求出f(x)的单调区间,则I是其单调区间的子集.1210.利用导数研究函数的极值与最值(1)求函数的极值的一般步骤①确定函数的定义域;②解

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。