欢迎来到天天文库
浏览记录
ID:39656598
大小:21.00 KB
页数:3页
时间:2019-07-08
《九年级数学上册-21.3-实际问题与一元二次方程(第1课时)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、21.3实际问题与一元二次方程(1)【教学目标】知识与技能:1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.2.能根据具体问题的实际意义,检验结果是否合理.过程与方法:经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述情感态度价值观:通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步的作用.【教学重难点】教学重点:列一元二次方程解有关传播问题的应用题教学难点:发现传播问题中的等量关系【教学过程】一、复习引入1、解一元二次
2、方程都是有哪些方法?2、列一元一次方程解应用题都是有哪些步骤?①审题;②设未知数;③找相等关系;④列方程;⑤解方程;⑥答说明:为继续学习建立一元二次方程的数学模型解实际问题作好铺垫.二、探索新知【探究1】有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?思考:(1)本题中有哪些数量关系?(2)如何理解“两轮传染”?(3)如何利用已知的数量关系选取未知数并列出方程?设每轮传染中平均一个人传染x个人,那么患流感的这个人在第一轮传染中传染了人;第一轮传染后,共有人患了流感;在第二轮传染中,传染源是人,这些人中每一个人又传染了人,
3、那么第二轮传染了,第二轮传染后,共有人患流感.(4)根据等量关系列方程并求解解:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染x(1+x)人患了流感.于是可列方程:1+x+x(1+x)=121解方程得 x1=10, x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.(5)为什么要舍去一解?(6)如果按照这样的传播速度,三轮传染后,有多少人患流感?练习1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x个小分支
4、,则1+x+x·x=91x1=9,x2=-10(不合题意,舍去)答:每个支干长出9个小分支.2.要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排15场比赛,应邀请多少个球队参加比赛?3.参加一次聚会的每两人都握了一次手,所有人共握手10次,有多少人参加聚会?【探究2】两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?思考:(1)怎样理解下降额和下降率的关系?(2)若设甲种药品平均下降率
5、为x,则一年后,甲种药品的成本下降了元,此时成本为元;两年后,甲种药品下降了元,此时成本为元。(3)对甲种药品而言根据等量关系列方程并求解、选择根?解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为5000(1-x)2元.依题意,得5000(1-x)2=3000解得:x1≈0.225,x2≈1.775(不合题意,舍去)(4)同样的方法请同学们尝试计算乙种药品的平均下降率,并比较哪种药品成本的平均下降率较大。设乙种药品成本的平均下降率为y.则:6000(1-y)2=3600整理,得:(1-y)2=0.6解得:
6、y≈0.225答:两种药品成本的年平均下降率一样大(5)思考经过计算,你能得出什么结论?成本下降额较大的药品,它的下降率一定也较大吗?应怎样全面地比较几个对象的变化状况?三、小结作业小结:1.列一元二次方程解应用题的步骤:审、设、找、列、解、答。最后要检验根是否符合实际意义。2.用“传播问题”建立数学模型,并利用它解决一些具体问题.3.对于变化率问题,若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有:(常见n=2)作业:P22综合运用:6、7P26综合运用:10
此文档下载收益归作者所有