《高等代数》研究生入学考试大纲

《高等代数》研究生入学考试大纲

ID:39650993

大小:40.00 KB

页数:4页

时间:2019-07-08

《高等代数》研究生入学考试大纲_第1页
《高等代数》研究生入学考试大纲_第2页
《高等代数》研究生入学考试大纲_第3页
《高等代数》研究生入学考试大纲_第4页
资源描述:

《《高等代数》研究生入学考试大纲》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、中国地质大学研究生院硕士研究生入学《解析几何与高等代数》考试大纲第一部分考试说明一、考试性质空间解析几何与高等代数是为全国硕士研究生入学考试数学系各专业设置的课程,它的评价标准是高等学校优秀本科毕业生能达到及格及以上水平。二、考试范围多项式理论、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、欧氏空间、以及平面与空间直线、空间曲线与二次曲面三、考试形式与试卷结构(一)答卷方式:闭卷,笔试;所列题目全部为必答题。(二)答题时间:180分钟。(三)各部分的考查比例:高等代数部分约80%空间解析几何部分约20%(四)题型类型填空题、选择

2、题、计算题和证明题第二部分考查要点一、多项式理论理解数域P上一元多项式的定义、多项式相乘、次数、一元多项式环等概念,整除的定义,两个(或若干个)多项式的最大公因式,互素等概念及性质,不可约多项式的定义及性质,多项式与多项式函数的关系,代数基本定理,有理系数多项式的分解与整系数多项式分解的关系,多元多项式、对称多项式的定义。能判断一个代数系统是否是数域,掌握多项式的运算及运算律,能用辗转相除法求两个多项式的最大公因式,理解不可约多项式的定义及性质,标准分解式,k重因式,多项式函数的概念、余数定理、多项式的根及性质,对称多项式基本定理。了解

3、带余除法及整除的性质,因式分解及唯一性定理,复(实)系数多项式分解定理及标准分解式,本原多项式的定义、高斯(Gauss)引理、整系数多项式的有理根的性质、爱森斯坦(Eisenstein)判别法。二、行列式1、理解行列式的概念,掌握行列式的性质、拉普拉斯(Laplace)定理及行列式的乘法法则。2、会应用行列式概念和基本性质计算行列式,能够熟练掌握行列式按行(列)展开定理,能够运用递推公式计算一些经典类型的行列式。三、线性方程组1、理解n维向量、向量的线性组合与线性表示等概念。2、理解向量组线性相关、线性无关的定义、熟练掌握判断向量组线性

4、相关、线性无关的方法。3、理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩。4、理解向量组等价的概念、清楚向量组的秩与矩阵秩的关系。5、会用克莱姆(Cramer)法则求解线性方程组。6、掌握齐次线性方程组有非零解的充分必要条件,及非齐次线性方程组有解的充分必要条件。7、熟练掌握齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法。8、理解非齐次线性方程组解的结构及通解的概念。9、掌握用初等行变换求解线性方程组的方法。四、矩阵1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵

5、、三角矩阵、对称矩阵和反对称矩阵,熟悉它们的基本性质。2、掌握矩阵的数乘、加法、乘法、转置等运算。了解方阵的多项式概念。3、理解逆矩阵的概念,掌握可逆矩阵的性质,以及矩阵可逆的判别条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。4、掌握矩阵的初等变换、初等矩阵的性质和矩阵等价的条件,理解矩阵的秩的概念,了解矩阵的秩与行列式的关系。了解矩阵乘积的秩与因子矩阵的秩的关系,了解n阶方阵非退化的概念及充分必要条件,熟练掌握用初等变换求矩阵的秩和逆矩阵的方法。5、熟悉分块矩阵及其运算。五、二次型1、掌握二次型及其矩阵表示,理解非退化线性替换与矩阵

6、合同的概念及性质,清楚二次型的非退化线性替换与二次型矩阵合同的关系。2、熟练掌握二次型的标准形、秩、规范形的概念以及惯性定理,理解复对称矩阵合同的充分必要条件。3、会用配方法化二次型为标准形。4、掌握二次型及实对称矩阵正定的概念及性质,掌握二次型及实对称矩阵正定的判别法。六、线性空间1、熟悉集合与映射的概念。2、理解线性空间的概念掌握线性子空间的判定方法。3、掌握线性空间的维数、基和坐标等基本概念和性质。4、掌握线性空间的基变换公式和坐标变换与过渡矩阵的关系。5、理解生成子空间的概念,掌握求子空间基和维数的方法。6、掌握子空间的交、和、

7、直积运算及其性质。七、线性变换1、掌握线性变换的概念、基本性质及运算。2、理解线性变换的矩阵,了解线性变换与矩阵的对应关系。3、掌握线性变换及其矩阵的特征值、特征向量、特征多项式的概念及性质,能够熟练地求解线性变换及矩阵的特征值和特征向量。4、了解关于特征多项式的哈密尔顿-凯莱(Hamilton-Caylay)定理,了解矩阵的迹。5、把握线性变换的特征子空间、线性变换的不变子空间的概念。6、掌握矩阵相似的概念、性质及矩阵可对角化的充分必要条件。熟悉将矩阵化为对角矩阵的方法。7、理解线性变换的值域、核、秩、零度的概念。8、了解矩阵的若当(

8、Jordan)标准型。八、欧氏空间1、掌握线性空间内积、向量的正交、欧几里德空间等基本概念及性质。2、理解正交变换和正交矩阵的关系,欧几里德空间中过渡矩阵的特殊性。3、理解和掌握标准(规范)正交基的概念,掌

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。