欢迎来到天天文库
浏览记录
ID:39643873
大小:56.50 KB
页数:8页
时间:2019-07-08
《认知障碍的病因及发病机制》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、认知障碍的病因及发病机制认知是大脑皮层复杂高级功能的反映,任何直接或间接导致大脑皮层结构和功能慢性损伤的因素均可通过不同机制引起认知障碍,现将其归纳如下:(一)慢性脑损伤1.脑组织调节分子异常(1)神经递质及其受体异常:大多数神经元之间的信息传递是通过神经递质(neurotransmitter)及其相应的受体完成的。这些神经递质或受体异常改变均可导致不同类型和不同程度的认知异常。1)多巴胺(dopamine):多巴胺是以酪氨酸为底物,在酪氨酸羟化酶(tyrosinehydroxylase)和多巴脱羧酶(dopaminedecarbox
2、ylase)的作用下合成的。研究发现:脑中多巴胺含量显著降低时可导致动物智能减退、行为情感异常、言语错乱等高级神经活动障碍。例如,在帕金森病(Parkinsondisease,PD)患者黑质多巴胺能神经元减少,酪氨酸羟化酶和多巴脱羧酶活性及纹状体多巴胺递质含量明显卞降。此外,在动物实验中发现多巴胺过多也可导致动物认知功能的异常改变。多巴胺受体有D1和D2受体两大家族,精神分裂症患者与大脑额叶皮层的D1受体功能低下和皮层下结构D2受体功能亢进双重因素有关,因此有人提出用D1激动和D2阻断治疗精神分裂症的新概念。2)去甲肾上腺素(none
3、pinephrine):去甲肾上腺素是最早被发现的单胺类神经递质,是多巴胺经β羟化酶作用生成的产物。在脑内,去甲肾上腺素通过α1、α2和β受体发挥调节作用。在突触前,α2受体通过Gi蛋白介导,减少cAMP的生成和cAMP依赖性蛋白激酶的活性,减少蛋白激酶对N-型Ca2+通道的磷酸化,以至Ca2+通道关闭,Ca2+内流减少,从而对去甲肾上腺素的释放起抑制作甩(负反馈调节);α2受体激动还可抑制在警醒状态下的蓝斑神经元的放电增加;在突触后,α1受体激动可引起K+通道开放,K+外流增加,神经元倾向超极化而产生抑制效应。而α1受体激活则使K+
4、通道功能降低,K+外流减少,神经元去极化产生兴奋效应。一般认为,脑中α2受体激动与维持正常的认知功能有关,而α1受体持续、过度激活可致认知异常。在正常警醒状态时,脑细胞含适量去甲肾上腺素,α2受体功能占优势,维持正常的认知功能。在应激状态下产生大量去甲肾肾上腺素,α1受体功能占优势;这可能是个体长期处于应激状态更易出现认知障碍的机制之一。3)乙酰胆碱(aeetylcholine):乙酰胆碱由乙酰辅酶A和胆碱在胆碱乙酰转移酶的作用下生成。神经细胞合成并释放的乙酰胆碱通过M-受体(M-AchR,毒蕈碱受体)和N-受体(N-AchR,烟碱受
5、体)发挥调节作用,M-AchR是G-蛋白耦联受体,N-AchR是配体门控离子通道受体。脑内的胆碱能神经元被分为两类,即局部环路神经元和投射神经元,自Meynert基底核发出的胆碱能纤维投射至皮层的额叶、顶叶、颞叶和视皮层,此通路与学习记忆功能密切相关。阿尔茨海默病(Alzheimer'sdisease,AD)患者在早期便有Meynert基底区胆碱能神经元减少,导致皮层胆碱乙酰转移酶活性和乙酰胆碱含量显著降低,是AD患者记忆障碍的重要机制之一;精神分裂症者认知障碍的程度与皮层胆碱乙酰转移酶活性呈负相关;给AD和精神分裂症患者使用胆碱酯酶
6、抑制剂或M受体激动剂可改善其记忆缺损。4)谷氨酸(glutamate):在脑内,氨基酸类递质含量最高,其中,谷氨酸在人大脑皮层中的含量约为9-11μmol/g,比乙酰胆碱或单胺类递质的含量高103数量级,比神经肽的含量高106数量级。谷氨酸是不能透过血脑屏障的非必需氨基酸,脑内的谷氨酸可分别由谷氨酰胺在谷氨酰胺酶的作用下水解或α-酮戊二酸在其转氨酶的作用下生成。谷氨酸藉N-甲基-D-门冬氨酸(N-methyl-D-aspartate,NMDA)和非NMDA受体起作用。NMDA受体是配体门控的离子通道型受体;非NMDA受体主要指海人藻酸
7、(kainate,KA)和α-氨基-3-羟基-5-甲基-4-异恶唑-丙酸(α-mino-3-hydroxy-5-methy-4-isoxa-zolep-propionate,AMPA)是Na+-K+通透性离子通道型受体。纹状体的谷氨酸神经纤维抑制丘脑向大脑皮层发出感觉冲动,当谷氨酸能神经低下时,这种冲动发出增多,大脑皮质单胺活性增强,引起相应的认知功能异常。由于谷氨酸是哺乳动物脑内最重要的兴奋性神经递质,故当谷氨酸含量异常增高时,可引起“兴奋性毒性”损伤(见后述)。(2)神经肽异常:神经肽(neuropeptide)是生物体内的一类生
8、物活性多肽,主要分布于神经组织。在脑内,神经肽与神经递质(neurotransmitter)常常共存于同一神经细胞,但神经肽与经典神经递质有诸多不同:神经肽比神经递质分子量大,在脑组织中含量低;神经肽由无活性的前体蛋白加
此文档下载收益归作者所有