欢迎来到天天文库
浏览记录
ID:39611038
大小:397.51 KB
页数:22页
时间:2019-07-07
《2013年安徽省高考数学试卷(理科)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、2013年安徽省高考数学试卷(理科) 一、选择题:本大题共10小题,每小题5分,每小题给出的四个选项中,只有一个符合题目要求1.(5分)(2013•安徽)设i是虚数单位,是复数z的共轭复数,若(z•)i+2=2z,则z=( )A.1+iB.1﹣iC.﹣1+iD.﹣1﹣i2.(5分)(2013•安徽)如图所示,程序框图(算法流程图)的输出结果是( )A.B.C.D.3.(5分)(2013•安徽)在下列命题中,不是公理的是( )A.平行于同一个平面的两个平面平行B.过不在同一直线上的三个点,有且只有一个平面C.如果一条直线上的两点在同一个平面内,那么这条直线上所有点都在此平面内D.如果两个不
2、重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线4.(5分)(2013•安徽)“a≤0”是“函数f(x)=
3、(ax﹣1)x
4、在区间(0,+∞)内单调递增”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)(2013•安徽)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93,下列说法正确的是( )A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于
5、这五名女生成绩的方差D.该班男生成绩的平均数大于该班女生成绩的平均数6.(5分)(2013•安徽)已知一元二次不等式f(x)<0的解集为{x
6、x<﹣1或x>},则f(10x)>0的解集为( )A.{x
7、x<﹣1或x>﹣lg2}B.{x
8、﹣1<x<﹣lg2}C.{x
9、x>﹣lg2}D.{x
10、x<﹣lg2}7.(5分)(2013•安徽)在极坐标系中圆ρ=2cosθ的垂直于极轴的两条切线方程分别为( )第22页(共22页)A.θ=0(ρ∈R)和ρcosθ=2B.θ=(ρ∈R)和ρcosθ=2C.θ=(ρ∈R)和ρcosθ=1D.θ=0(ρ∈R)和ρcosθ=18.(5分)(2013•安徽)函数y
11、=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,xn,使得=…=,则n的取值范围是( )A.{3,4}B.{2,3,4}C.{3,4,5}D.{2,3}9.(5分)(2013•安徽)在平面直角坐标系中,O是坐标原点,两定点A,B满足
12、
13、=
14、
15、=•=2,则点集{P
16、=λ+μ,
17、λ
18、+
19、μ
20、≤1,λ,μ∈R}所表示的区域的面积是( )A.B.C.D.10.(5分)(2013•安徽)若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是( )A.3B.4C.
21、5D.6 二、填空题:本大题共5小题,每小题5分,共25分,把答案填写在答题卡上11.(5分)(2013•安徽)若的展开式中x4的系数为7,则实数a= .12.(5分)(2013•安徽)设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sinA=5sinB,则角C= .13.(5分)(2013•安徽)已知直线y=a交抛物线y=x2于A,B两点,若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为 .14.(5分)(2013•安徽)如图,互不相同的点A1,A2,…,An,…和B1,B2,…,Bn,…分别在角O的两条边上,所有AnBn相互平行,且所有梯
22、形AnBnBn+1An+1的面积均相等,设OAn=an,若a1=1,a2=2,则数列{an}的通项公式是 .第22页(共22页)15.(5分)(2013•安徽)如图,正方体ABCD﹣A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S,则下列命题正确的是 (写出所有正确命题的编号).①当0<CQ<时,S为四边形②当CQ=时,S为等腰梯形③当CQ=时,S与C1D1的交点R满足C1R=④当<CQ<1时,S为六边形⑤当CQ=1时,S的面积为. 三、解答题:本大题共6小题,共75分.解答时应写出文字说明、证明过程或演算骤16.(
23、12分)(2013•安徽)已知函数f(x)=4cosωx•sin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,]上的单调性.17.(12分)(2013•安徽)设函数f(x)=ax﹣(1+a2)x2,其中a>0,区间I={x
24、f(x)>0}(Ⅰ)求I的长度(注:区间(a,β)的长度定义为β﹣α);(Ⅱ)给定常数k∈(0,1),当1﹣k≤a≤1+k时,求I长度的最
此文档下载收益归作者所有