资源描述:
《《次函数的图象》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、5.3一次函数的图象(1)欢迎走进数学课堂一同探索一次函数的图象教学目标:1.经历作图过程,了解什么叫图象?图象是怎样产生的?2初步了解画函数图象的一般步骤,能熟练地作出一次函数的图象.3会根据坐标判断所给的点是否在所给的图象上.观察下面的图片,你能得到哪些信息?请将观察的结果填入下表:点燃时间/min05101520香的长度/cm1612840设香长为ycm,点燃时间为xmin,你能写出y与x的关系式吗?y=16-0.8x依次连接图片中香的顶端,你有什么发现?你能用平面直角坐标系,将图片所揭示的信息及你的发现告诉大家吗?以x轴表示点燃时间,以y轴表示
2、香的长度,建立直角坐标系,分别描出点(0,16),点(5,12),点(10,8),点(15,4),点(20,0).(20,0)(15,4)(10,8)(5,12)(0,16)16141210864251015200yxy=16-0.8x16141210864251015200yx(20,0)(15,4)(10,8)(5,12)(0,16)y=16-0.8x这些点有什么特征?这些点都在一条直线上.如何在直角坐标系中画一次函数y=2x+1的图象?探索学习:1.列表x…-2-1012…y=2x+1……(x,y)……2.描点-3-1135(-2,-3)(-1,
3、-1)(0,1)(1,3)(2,5)3.连线y=2x+1••••y=-x+2xy011练一练:仿照刚才方法画一次函数y=-x+2的图象;⑴列表;⑵描点;⑶连线.x……y=-x+2……-2-101243210反思:画一次函数图象的一般步骤是什么?一次函数的图象是什么样的图形?•⑴列表;⑵描点;⑶连线.结论:一次函数y=kx+b(k≠0)的图象是一条直线;画一次函数图象的一般步骤:一次函数y=kx+b(k≠0)的图象也称为直线y=kx+b(k≠0).画一次函数y=-x+2的图象有没有简捷的方法呢?画一次函数y=-x+2的图象时,只要确定2个点的位置,过这两
4、个点画直线就可以了。想一想?议一议:通常选取哪两点比较方便?画一次函数y=-3x+3的图象例题1:y=-3x+3当x=0时代入y=-3x+3中,得:y=3(0,3)解:当y=0时代入y=-3x+3中,得:x=1(1,0)P(2,-3)问题1:已知点(-1,6)满足一次函数y=-3x+3,请问该点在这个函数图象上吗?问题2:已知在该函数的图象上有一点P(2,-3),请问该点是否满足这个一次函数关系式呢?由此可见:一次函数关系式与它的图象之间的关系是()一一对应课堂小结一条直线⑴列表;⑵描点;⑶连线.1、作一次函数图象的步骤是.2、知道一次函数y=kx+b
5、(k≠0)的图象是;因此在作图时,只要确定两点就可以了。一般找直线与坐标轴(x、y轴)的2个交点。画一次函数y=kx+b(k≠0)的图象时,只要确定2个点的位置,即点(0,b),点(,0);小结:谢谢大家,真诚地希望您能提出宝贵的意见!