汽车结构有限元分析试题及答案(精华)

汽车结构有限元分析试题及答案(精华)

ID:39572655

大小:722.00 KB

页数:8页

时间:2019-07-06

汽车结构有限元分析试题及答案(精华)_第1页
汽车结构有限元分析试题及答案(精华)_第2页
汽车结构有限元分析试题及答案(精华)_第3页
汽车结构有限元分析试题及答案(精华)_第4页
汽车结构有限元分析试题及答案(精华)_第5页
资源描述:

《汽车结构有限元分析试题及答案(精华)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、一、20分)(×)1.节点的位置依赖于形态,而并不依赖于载荷的位置(√)2.对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元(×)3.不能把梁单元、壳单元和实体单元混合在一起作成模型(√)4.四边形的平面单元尽可能作成接近正方形形状的单元(×)5.平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案(×)6.用有限元法不可以对运动的物体的结构进行静力分析(√)7.一般应力变化大的地方单元尺寸要划的小才好(×)8.所谓全约束只要将位移自由度约束住,而不必约束转动自由度(√)9.同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小(√)

2、10一维变带宽存储通常比二维等带宽存储更节省存储量。二、填空(20分)1.平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是:平行于板面且沿厚度均布载荷作用,变形发生在板面内;后者受力特点是:垂直于板面的力的作用,板将变成有弯有扭的曲面。2.平面应力问题与平面应变问题都具有三个独立的应力分量:σx,σy,τxy,三个独立的应变分量:εx,εy,γxy,但对应的弹性体几何形状前者为薄板,后者为长柱体。3.位移模式需反映刚体位移,反映常变形,满足单元边界上位移连续。4.单元刚度矩阵的特点有:对称性,奇异性,还可按节点分块。5.轴对称问题单元形状为:三角形或四

3、边形截面的空间环形单元,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为二维问题处理。6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。7.有限单元法首先求出的解是节点位移,单元应力可由它求得,其计算公式为。(用符号表示即可)8.一个空间块体单元的节点有3个节点位移:u,v,w9.变形体基本变量有位移应变应力基本方程平衡方程物理方程几何方程10.实现有限元分析标准化和规范化的载体就是单元三选择题(14分)1等参变换是指单元坐标变换和函数插值采用

4、__B___的结点和______的插值函数。(A)不相同,不相同(B)相同,相同(C)相同,不相同(D)不相同,相同2有限元位移模式中,广义坐标的个数应与_______B____相等。(A)单元结点个数(B)单元结点自由度数(C)场变量个数3如果出现在泛函中场函数的最高阶导数是m阶,单元的完备性是指试探函数必须至少是___B___完全多项式。(A)m-1次(B)m次(C)2m-1次4与高斯消去法相比,高斯约当消去法将系数矩阵化成了____C_____形式,因此,不用进行回代计算。(A)上三角矩阵(B)下三角矩阵(C)对角矩阵5对分析物体划分好单元后,___C_______

5、会对刚度矩阵的半带宽产生影响。(A)单元编号(B)单元组集次序(C)结点编号6n个积分点的高斯积分的精度可达到__C____阶。(A)n-1(B)n(C)2n-1(D)2n7引入位移边界条件是为了消除有限元整体刚度矩阵的_____C_____。(A)对称性(B)稀疏性(C)奇异性三.简答题(共20分,每题5分)1、简述有限单元法结构刚度矩阵的特点。2、简述有限元法中选取单元位移函数(多项式)的一般原则。1、答:(1)对称性;(2)奇异性;(3)主对角元恒正;(4)稀疏性;(5)非零元素带状分布2、答:一般原则有(1)广义坐标的个数应该与结点自由度数相等;(2)选取多项式时

6、,常数项和坐标的一次项必须完备;(3)多项式的选取应由低阶到高阶;(4)尽量选取完全多项式以提高单元的精度。有限元方法分析的目的:1)对变形体中的位移、应力、应变进行定义和表达,进而建立平衡方程、几何方程和物理方程。2)针对具有任意复杂几何形状的变形体,完整得获取在复杂外力作用下它内部的准确力学信息。3)力学分析的基础上,对设计对象进行强度(strength)、刚度(stiffness)评判,修改、优化参数。3.有限单元法分析步骤1、结构的离散化2、选择位移模式3、分析单元的力学特性4、集合所有单元平衡方程,得到整体结构的平衡方程5、由平衡方程求解未知节点位移6、单元应变

7、和应力的计算4连续体结构分析的基本假定:(1)连续性假设;(2)完全弹性假设;(3)均匀性假设;(4)各向同性假设;(5)小变形假设。四计算题(20)1、如图1所示等腰直角三角形单元,其厚度为,弹性模量为,泊松比;单元的边长及结点编号见图中所示。求(1)形函数矩阵(2)应变矩阵和应力矩阵(3)单元刚度矩阵1、解:设图1所示的各点坐标为点1(a,0),点2(a,a),点3(0,0)于是,可得单元的面积为,及(1)形函数矩阵为(7分);(2)应变矩阵和应力矩阵分别为(7分),,;,,;(3)单元刚度矩阵(6分)一.是非题(认为该题

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。