dtcc14-spark-runtime-internals(001)

dtcc14-spark-runtime-internals(001)

ID:39507525

大小:1.12 MB

页数:60页

时间:2019-07-04

dtcc14-spark-runtime-internals(001)_第1页
dtcc14-spark-runtime-internals(001)_第2页
dtcc14-spark-runtime-internals(001)_第3页
dtcc14-spark-runtime-internals(001)_第4页
dtcc14-spark-runtime-internals(001)_第5页
资源描述:

《dtcc14-spark-runtime-internals(001)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、RuntimeInternals连城lian@databricks.comcheng.lian@ciilabs.orgWhatis•Afastandgeneralengineforlarge-scaledataprocessing•AnopensourceimplementationofResilientDistributedDatasets(RDD)•HasanadvancedDAGexecutionenginethatsupportscyclicdataflowandin-memorycomputingWhy•Fast–Runmachinelearninglikeiterativeprog

2、ramsupto100xfasterthanHadoopMapReduceinmemory,or10xfasterondisk–RunHiveQLcompatiblequeries100xfasterthanHive(withShark/SparkSQL)Why•Easytouse–FluentScala/Java/PythonAPI–Interactiveshell–2-5xlesscode(thanHadoopMapReduce)Why•Easytouse–FluentScala/Java/PythonAPI–Interactiveshell–2-5xlesscode(thanHadoop

3、MapReduce)sc.textFile("hdfs://...").flatMap(_.split("")).map(_->1).reduceByKey(_+_).collectAsMap()Why•Easytouse–FluentScala/Java/PythonAPI–Interactiveshell–2-5xlesscode(thanHadoopMapReduce)sc.textFile("hdfs://...").flatMap(_.split(""))Canyouwritedown.map(_->1)WordCount.reduceByKey(_+_)in30secondswit

4、h.collectAsMap()HadoopMapReduce?Why•Unifiedbigdatapipelinefor:–Batch/Interactive(SparkCorevsMR/Tez)–SQL(Shark/SparkSQLvsHive)–Streaming(SparkStreamingvsStorm)–Machinelearning(MLlibvsMahout)–Graph(GraphXvsGiraph)ABiggerPicture...AnEvenBiggerPicture...•ComponentsoftheSparkstackfocusonbigdataanalysisan

5、darecompatiblewithexistingHadoopstoragesystems•Usersdon’tneedtosufferexpensiveETLcosttousetheSparkstack“OneStackToRuleThemAll”•Well,mostly:-)•Anddon'tforgetShark/SparkSQLvsHiveResilientDistributedDatasetsResilientDistributedDatasets•Conceptually,RDDscanberoughlyviewedaspartitioned,localityawaredistr

6、ibutedvectors•AnRDD…–eitherpointstoadirectdatasource–orappliessometransformationtoitsparentRDD(s)togeneratenewdataelements–ComputationcanberepresentedbylazyevaluatedlineageDAGscomposedbyconnectedRDDsResilientDistributedDatasets•FrequentlyusedRDDscanbematerializedandcachedin-memorytoacceleratecomputa

7、tion•SparkschedulertakesdatalocalityintoaccountTheIn-MemoryMagic•“Infact,onestudy[1]analyzedtheaccesspatternsintheHivewarehousesatFacebookanddiscoveredthatforthevastmajority(96%)ofjobs,theentireinputs

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。