资源描述:
《Optimization of Non-Linear Multiple Traveling Salesman Problem Using K-Means Clustering, Shrink Wrap Algorithm and Meta-Heur》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、ISSN1749-3889(print),1749-3897(online)InternationalJournalofNonlinearScienceVol.8(2009)No.4,pp.480-487OptimizationofNon-LinearMultipleTravelingSalesmanProblemUsingK-MeansClustering,ShrinkWrapAlgorithmandMeta-HeuristicsR.Nallusamy1∗,K.Duraiswamy2,R.Dhanalaksmi3,
2、P.Parthiban41DepartmentofCSE,K.S.R.CollegeofTechnologyTiruchengode-637215,Tamilnadu,India2K.S.R.CollegeofTechnologyTiruchengode-637215,Tamilnadu,India3D-LinkIndiaLtd,Bangalore,India4Departmentofproductionengineering,NationalInstituteofTechnology,Tiruchirappalli
3、,India(Received29August2009,accepted27September2009)Abstract:ThispaperdealswithgeneratingofanoptimizedrouteformultipleTravelingSales-manProblems.Weusedamethodologyofclusteringthegivencitiesdependinguponthenum-berofsalesmenandeachclusterisallottedtoasalesman.?-M
4、eansclusteringalgorithmhasbeenusedforeasyclusteringofthecities.Inthiswaythe?TSPhasbeenconvertedintoTSPwhichissimpleincomputationcomparedtomTSP.Afterclustering,anoptimizedrouteisgeneratedforeachsalesmaninhisallottedcluster.Toachievethis,wefirstgeneratedaparentrou
5、teusingShrinkWrapalgorithmandthisparentstringisfurtheroptimizedbyusingtwootheroptimizingalgorithms.Forthispurpose,TabuSearchandSimulatedAnnealingwereextensivelyused.Fromtheresults,weobservedthatSimulatedAnnealinggenerateoptimizedroutecoveringlessdistancethanTab
6、usearch.Keywords:combinatorialoptimization;?-meansclustering;multipletravelingsalesmanprob-lem;simulatedannealingandTabusearch1IntroductionProblemsofcombinatorialoptimizationarecharacterizedbytheirwell-structuredproblemdefinitionaswellasbytheirhugenumberofaction
7、alternativesinpracticalapplicationareasofreasonablesize.Especiallyinareaslikerouting,taskallocation,orschedulingsuchkindsofproblemsoftenoccur.Theiradvantageliesintheeasyunderstandingoftheiractionalternativesandtheirobjectivefunction.UtilizingclassicalmethodsofO
8、perationsResearch(OR)oftenfailsduetotheexponentiallygrowingcomputationaleffort.Therefore,inpracticeheuristicsandmeta-heuristicsarecommonlyusedeveniftheyareunabletoguaranteea