小波变换与傅里叶变换的对比、异同

小波变换与傅里叶变换的对比、异同

ID:39486625

大小:36.01 KB

页数:3页

时间:2019-07-04

小波变换与傅里叶变换的对比、异同_第1页
小波变换与傅里叶变换的对比、异同_第2页
小波变换与傅里叶变换的对比、异同_第3页
资源描述:

《小波变换与傅里叶变换的对比、异同》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、小波变换与傅里叶变换的对比、异同一、基的概念两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开系数大的,说明信号和基是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是0-2pi标准正交基,而小波是-inf到inf之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为Reisz基,或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是PARSEVAL定理。(时频能量守恒)。二、离散化的

2、处理傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。

3、小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。也就是,对于任何一个尺度a和平移因子b的小波,和原信号内积,所得到的小波系数,都可以表示成,在a,b附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度

4、离散化。一般只将a二进离散化,此时b是任意的。这样小波被称为二进小波。第二步,离散b。怎么离散化呢?b取多少才合适呢?于是,叫小波采样定理的东西,就这样诞生了。也就是小波平移的最小距离(采样间隔),应该大于二倍小波基的最高频率(好像类似,记不清了)。所以b取尺度的整数倍就行了。也就是越胖的小波,对应频谱越窄,平移量应该越大,采样间隔越大。当然,第一二两步的频域理解,即在满足频域窗口中心是3倍的频域窗口半径的前提下,频域就在统计上是完美二分的。(但很多小波满足不了这个条件,而且频域窗口能量不?,所以只是近

5、似二分的).这时的小波变换,称为离散二进小波变换.第三步,引入稳定性条件.也就是经过变换后信号能量和原信号能量有什么不等式关系.满足稳定性条件?后,也就是一个小波框架产生了可能.他是数值稳定性的保证.一个稍弱的稳定条件???,就是?

6、进来了。若A和B不相等,但又相差不大,这时稳定重构也是可能的,这时成为几乎紧框架的。(好像说这样小波有橹棒性特点,也就是粗略分解,但却精确重构。)经过3步,我们最终地得到了一个二进离散化稳定的小波变换,这正是我们要的结果。三、快速算法。如果说现代数字信号处理革命的算法,甚至是很多快速算法的老始祖,或者是满矩阵向量乘法一个几乎不可抗拒的最小计算量NlogN,那就是令我不得不佩服的快速傅里叶变换(FFT)。这里我不想解释过多的基2算法,和所谓的三重循环,还有那经典的蝶形单元,或是分裂基之类,我想说的就是一种

7、时频对应关系。也就是算法的来源。我们首先明确,时域的卷积对应频域的相乘,因此我们为了实现卷积,可以先做傅里叶变换,接着在频域相乘,最后再做反傅里叶变换。这里要注意,实际我们在玩DSP。因此,大家要记住,圆周卷积和离散傅里叶变换,是一家子。快速傅里叶是离散傅里叶的快速算法。因此,我们实现离散线性卷积,先要补零。然后使得它和圆周卷积相等。然后就是快速傅里叶变换,频域相乘,最后反快速傅里叶变换。当然,如果我们就需要的是圆周卷积,那我们也就不需要多此一举的补零。这里,我们可以把圆周卷积,写成矩阵形式。这点很重要

8、。Y=AX。这里的A是循环矩阵。但不幸的是A仍然是满阵。小波的快速算法。MALLAT算法,是一个令人振奋的东西。它实质给了多分辨率分析(多尺度分析)一个变得一发而不可收的理由。它实质上,讲了这样一个意思。也就是。我在一个较高的尺度(细节)上作离散二进稳定的小波变换,得到了一个结果(小波系数),我若是想得到比它尺度低的小波系数(概貌),我不用再计算内积,只是把较高尺度的小波系数和低通或高通滤波器卷积再抽取即可。但是,所有这些证明的推导是在整个

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。