欢迎来到天天文库
浏览记录
ID:3937747
大小:1.57 MB
页数:89页
时间:2017-11-25
《高等数学讲义之积分表公式推导》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、《高等数学讲义——积分公式》ByDanielLau高等数学高等数学高等数学高等数学积积积积分分分分表表表表Lau公公公公式式式式推推推推导导导导Daniel《高等数学讲义——积分公式》ByDanielLauLauDaniel《高等数学讲义——积分公式》ByDanielLau目目录录(一)含有(一)(一)含有含有ax+b的积分(1~9)·······················································1(二)含有(二)(二)含有含有ax+b的积分(10~18)························
2、···························522(三)含有(三)(三)含有含有x±a的积分(19~21)····················································92(四)含有(四)(四)含有含有ax+b(a>)0的积分(22~28)············································112(五)含有(五)(五)含有含有ax+bx+c(a>)0的积分(29~30)········································1422(六)
3、含有(六)(六)含有含有x+a(a>)0的积分(31~44)·········································1522(七)含有(七)(七)含有含有x−a(a>)0的积分(45~58)·········································2422(八)含有(八)(八)含有含有a−x(a>)0的积分(59~72)·········································Lau372(九)含有(九)(九)含有含有±a+bx+c(a>)0的积分(73~78)·······
4、·····························48x−a(十)含有(十)(十)含有含有±或(x−a)(b−x)的积分(79~82)···························51x−b(十一)含有三角函数的积分(十一)含有三(十一)含有三角函数的积分角函数的积分(83~112)···········································55(十二)含有反三角函数的积分(其中(十二)含有反(十二)含有反三角函数的积分(其中三角函数的积分(其中a>0)(113~121)··················
5、·····68(十三)含有指数函数的积分(十三)含有指(十三)含有指数函数的积分数函数的积分Daniel(122~131)··········································73(十四)含有对数函数的积分(十四)含有对(十四)含有对数函数的积分数函数的积分(132~136)··········································78(十五)含有双曲函数的积分(十五)含有双(十五)含有双曲函数的积分曲函数的积分(137~141)································
6、··········80(十六)定积分((十六)定积分十六)定积分(142~147)····························································81附录:常数和基本初等函数导数公式附录:常数和基附录:常数和基本初等函数导数公式本初等函数导数公式·········································85说明················································································
7、·····86团队人员团队人团队人员员··············································································87《高等数学讲义——积分公式》ByDanielLauLauDaniel《高等数学讲义——积分公式》ByDanielLau(一)含有(一)含有(一)含有ax+b的积分(1~9)dx11.∫=⋅lnax+b+Cax+ba1b证明:被积函数f()x=的定义域为{x
8、x≠−}ax+ba1令ax+b=t(t≠)0,则dt=adx,∴dx=dtadx11∴∫=∫dta
9、x+bat1=⋅lnt+Cadx1将t=ax+b代入上式得:∫=⋅lnax+b+Cax+baμ1μ+12.∫(ax+b)d
此文档下载收益归作者所有