高等数学积分表公式推导

高等数学积分表公式推导

ID:37304315

大小:1.00 MB

页数:91页

时间:2019-05-21

高等数学积分表公式推导_第1页
高等数学积分表公式推导_第2页
高等数学积分表公式推导_第3页
高等数学积分表公式推导_第4页
高等数学积分表公式推导_第5页
资源描述:

《高等数学积分表公式推导》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、高等数学积分表公式推导目录(一)含有axb的积分(1~9)·······················································1(二)含有axb的积分(10~18)···················································522(三)含有xa的积分(19~21)····················································92(四)含有axb(a0)的积分(22~28)······································

2、······112(五)含有axbxc(a0)的积分(29~30)········································1422(六)含有xa(a0)的积分(31~44)·········································1522(七)含有xa(a0)的积分(45~58)·········································2422(八)含有ax(a0)的积分(59~72)·········································372(九)含有abx

3、c(a0)的积分(73~78)····································48xa(十)含有或(xa)(bx)的积分(79~82)···························51xb(十一)含有三角函数的积分(83~112)···········································55(十二)含有反三角函数的积分(其中a0)(113~121)·······················68(十三)含有指数函数的积分(122~131)·································

4、·········73(十四)含有对数函数的积分(132~136)··········································78(十五)含有双曲函数的积分(137~141)··········································80(十六)定积分(142~147)····························································81附录:常数和基本初等函数导数公式·········································85说明···········

5、··········································································86团队人员··············································································87(一)含有axb的积分(1~9)dx11.lnaxbCaxba1b证明:被积函数f(x)的定义域为{x

6、x}axba1令axbt(t0),则dtadx,dxdtadx11dtaxbat1lntCadx1将taxb

7、代入上式得:lnaxbCaxbaμ1μ12.(axb)dx(axb)C(μ1)a(μ1)1证明:令axbt,则dtadx,dxdtaμ1μ(axb)dxtdta1μ1tCa(μ1)μ1μ1将taxb代入上式得:(axb)dx(axb)Ca(μ1)x13.dxaxbblnaxbC2axbaxb证明:被积函数f(x)的定义域为{x

8、x}axba11令axbt(t0),则xtb,dxdtaa1tbxa11bdx·dt1dt2axbt

9、aat11bdtdt22aattblntC22aa1tblntC2ax1将taxb代入上式得:dxaxbblnaxbC2axba-1-2x11224.dx(axb)2b(axb)blnaxbC3axba2222x1(axb)2abxb)证明:dxdx2axbaaxb2112abx1b(axb)dxdxdx222aaaxbaaxb112(axb)dx(ax

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。