欢迎来到天天文库
浏览记录
ID:39342249
大小:26.36 KB
页数:4页
时间:2019-07-01
《窗函数的基本介绍》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、窗函数的基本介绍数字信号处理的主要数学工具是博里叶变换.而傅里叶变换是研究整个时间域和频率域的关系。不过,当运用计算机实现工程测试信号处理时,不可能对无限长的信号进行测量和运算,而是取其有限的时间片段进行分析。做法是从信号中截取一个时间片段,然后用观察的信号时间片段进行周期延拓处理,得到虚拟的无限长的信号,然后就可以对信号进行傅里叶变换、相关分析等数学处理。无线长的信号被截断以后,其频谱发生了畸变,原来集中在f(0)处的能量被分散到两个较宽的频带中去了(这种现象称之为频谱能量泄漏)。为了减少频谱能量泄漏,可采用不同的截取函数对信号进行截短,截断函数称为窗函数,简称为窗。信号截短以后产
2、生的能量泄漏现象是必然的,因为窗函数w(t)是一个频带无限的函数,所以即使原信号x(t)是有限带宽信号,而在截短以后也必然成为无限带宽的函数,即信号在频域的能量与分布被扩展了。又从采样定理可知,无论采样频率多高,只要信号一经截短,就不可避免地引起混叠,因此信号截短必然导致一些误差。泄漏与窗函数频谱的两侧旁瓣有关,如果两侧瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱,为此,在时间域中可采用不同的窗函数来截短信号。几种常用窗函数的性质和特点矩形窗矩形窗属于时间变量的零次幂窗。矩形窗使用最多,习惯上不加窗就是使信号通过了矩形窗。这种窗的优点是主瓣比较集中,缺点是旁瓣较
3、高,并有负旁瓣,导致变换中带进了高频干扰和泄漏,甚至出现负谱现象。三角窗三角窗亦称费杰(Fejer)窗,是幂窗的一次方形式。与矩形窗比较,主瓣宽约等于矩形窗的两倍,但旁瓣小,而且无负旁瓣。汉宁窗汉宁窗又称升余弦窗,汉宁窗可以看作是3个矩形时间窗的频谱之和,或者说是3个sinc(t)型函数之和,而括号中的两项相对于第一个谱窗向左、右各移动了π/T,从而使旁瓣互相抵消,消去高频干扰和漏能。可以看出,汉宁窗主瓣加宽并降低,旁瓣则显著减小,从减小泄漏观点出发,汉宁窗优于矩形窗.但汉宁窗主瓣加宽,相当于分析带宽加宽,频率分辨力下降。海明(Hamming)窗海明窗也是余弦窗的一种,又称改进的升余
4、弦窗。海明窗与汉宁窗都是余弦窗,只是加权系数不同。海明窗加权的系数能使旁瓣达到更小。分析表明,海明窗的第一旁瓣衰减为一42dB.海明窗的频谱也是由3个矩形时窗的频谱合成,但其旁瓣衰减速度为20dB/(10oct),这比汉宁窗衰减速度慢。海明窗与汉宁窗都是很有用的窗函数。高斯窗高斯窗是一种指数窗。高斯窗谱无负的旁瓣,第一旁瓣衰减达一55dB。高斯富谱的主瓣较宽,故而频率分辨力低.高斯窗函数常被用来截短一些非周期信号,如指数衰减信号等。窗函数的选择对于窗函数的选择,应考虑被分析信号的性质与处理要求。如果仅要求精确读出主瓣频率,而不考虑幅值精度,则可选用主瓣宽度比较窄而便于分辨的矩形窗,例
5、如测量物体的自振频率等;如果分析窄带信号,且有较强的干扰噪声,则应选用旁瓣幅度小的窗函数,如汉宁窗、三角窗等;对于随时间按指数衰减的函数,可采用指数窗来提高信噪比。相关原理不同的窗函数对信号频谱的影响是不一样的,这主要是因为不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。信号的截短产生了能量泄漏,而用FFT算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的,但是我们可以通过选择不同的窗函数对它们的影响进行抑制。(矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低;布莱克曼窗主瓣宽,旁瓣小,频率识别精度最低,但幅值识别精度最高)。
此文档下载收益归作者所有