资源描述:
《D112数项级数及审敛法(II)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二、交错级数及其审敛法三、绝对收敛与条件收敛第二节一、正项级数及其审敛法常数项级数的审敛法机动目录上页下页返回结束第十一章一、正项级数及其审敛法若定理1.正项级数收敛部分和序列有界.若收敛,∴部分和数列有界,故从而又已知故有界.则称为正项级数.单调递增,收敛,也收敛.证:“”“”机动目录上页下页返回结束都有定理2(比较审敛法)设且存在对一切有(1)若强级数则弱级数(2)若弱级数则强级数证:设对一切则有收敛,也收敛;发散,也发散.分别表示弱级数和强级数的部分和,则有是两个正项级数,(常数k>0),因在
2、级数前加、减有限项不改变其敛散性,故不妨机动目录上页下页返回结束(1)若强级数则有因此对一切有由定理1可知,则有(2)若弱级数因此这说明强级数也发散.也收敛.发散,收敛,弱级数机动目录上页下页返回结束例1.讨论p级数(常数p>0)的敛散性.解:1)若因为对一切而调和级数由比较审敛法可知p级数发散.发散,机动目录上页下页返回结束因为当故考虑强级数的部分和故强级数收敛,由比较审敛法知p级数收敛.时,2)若机动目录上页下页返回结束调和级数与p级数是两个常用的比较级数.若存在对一切机动目录上页下页返回结束证
3、明级数发散.证:因为而级数发散根据比较审敛法可知,所给级数发散.例2.机动目录上页下页返回结束定理3.(比较审敛法的极限形式)则有两个级数同时收敛或发散;(2)当l=0(3)当l=∞证:据极限定义,设两正项级数满足(1)当04、当且收敛时,(3)当且发散时,也收敛;也发散.机动目录上页下页返回结束的敛散性.~例3.判别级数的敛散性.解:根据比较审敛法的极限形式知例4.判别级数解:根据比较审敛法的极限形式知~机动目录上页下页返回结束定理4.比值审敛法(D’alembert判别法)设为正项级数,且则(1)当(2)当证:(1)收敛,时,级数收敛;或时,级数发散.由比较审敛法可知机动目录上页下页返回结束因此所以级数发散.时(2)当说明:当时,级数可能收敛也可能发散.例如,p–级数但级数收敛;级数发散.从而机动目录上页下页返回结束例
5、5.讨论级数的敛散性.解:根据定理4可知:级数收敛;级数发散;机动目录上页下页返回结束对任意给定的正数定理5.根值审敛法(Cauchy判别法)设为正项级则证明提示:即分别利用上述不等式的左,右部分,可推出结论正确.数,且机动目录上页下页返回结束时,级数可能收敛也可能发散.例如,p–级数说明:但级数收敛;级数发散.机动目录上页下页返回结束练习:讨论的敛散性.二、交错级数及其审敛法则各项符号正负相间的级数称为交错级数.定理6.(Leibnitz判别法)若交错级数满足条件:则级数收敛,且其和其余项满足
6、机动目录上页下页返回结束证:是单调递增有界数列,又故级数收敛于S,且故机动目录上页下页返回结束收敛收敛例6.用Leibnitz判别法判别下列级数的敛散性:收敛上述级数各项取绝对值后所成的级数是否收敛?发散收敛收敛机动目录上页下页返回结束三、绝对收敛与条件收敛定义:对任意项级数若若原级数收敛,但取绝对值以后的级数发散,则称原级收敛,数为条件收敛.均为绝对收敛.例如:绝对收敛;则称原级数条件收敛.机动目录上页下页返回结束定理7.绝对收敛的级数一定收敛.证:设根据比较审敛法显然收敛,收敛也收敛且收敛,令机
7、动目录上页下页返回结束例7.证明下列级数绝对收敛:证:(1)而收敛,收敛因此绝对收敛.机动目录上页下页返回结束(2)令因此收敛,绝对收敛.机动目录上页下页返回结束内容小结1.利用部分和数列的极限判别级数的敛散性2.利用正项级数审敛法必要条件不满足发散比值审敛法根值审敛法收敛发散不定比较审敛法(极限形式)用它法判别部分和有界机动目录上页下页返回结束3.任意项级数审敛法为(收敛)级数Leibniz判别法:(交错级数)则交错级数收敛概念:绝对收敛条件收敛机动目录上页下页返回结束思考与练习设正项级数收敛,能
8、否推出收敛?提示:由比较判敛法可知收敛.注意:反之不成立.例如,收敛,发散.机动目录上页下页返回结束作业P2064(3),(5),(6);5(2),(3),(5)第三节目录上页下页返回结束