欢迎来到天天文库
浏览记录
ID:39303172
大小:1.81 MB
页数:122页
时间:2019-06-30
《测量误差基本知识(测)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第五章测量误差的基本知识5-1概述一、测量误差的来源测量工作是在一定条件下进行的,外界环境、观测者的技术水平和仪器本身构造的不完善等原因,都可能导致测量误差的产生。通常把测量仪器、观测者的技术水平和外界环境三个方面综合起来,称为观测条件。通常把观测条件相同的各次观测,称为等精度观测;观测条件不同的各次观测,称为不等精度观测。测量误差主要来源:(1)外界环境主要指观测环境中气温、气压、空气湿度和清晰度、风力以及大气折光等因素的不断变化。(2)仪器误差仪器在加工和装配等工艺过程中,不能保证仪器结构能够满足各
2、种几何关系。(3)观测误差观测者的自身条件,观测者的感官鉴别能力,技术熟练程度,会在仪器对中、整平和瞄准等方面产生误差。由于以上原因,使得观测值偏离观测量的真值或理论值而产生真误差或闭合差,统称测量误差,简称误差。真误差:设某一观测量的真值或理论值为X,在等精度观测条件下对该量进行了n次观测,其观测值为li(i=1,2,3,…n),则相应的误差Δi定义为Δi=li–X称为真误差。闭合差:例如闭合水准测量的闭合差:全线高差观测值之和与其理论值(0)之差不为0;三角形闭合差,三内角观测值之和与理论值(180
3、0)之差不为0;往返距离丈量的闭合差:同一距离往返观测值之差与理论值(0)之差不为0。等均说明观测中存在误差。粗差:粗差是测量中的疏忽大意而造成的错误或电子测量仪器产生的伪观测值。例如,观测者由于判断错误而瞄错目标;量距时不细心,将钢尺上的6字看成9;观测者吐字不清或记录者思想不集中,导致听错或记错数据等。粗差非常有害,它不仅影响测量成果的可靠性,造成返工浪费,严重的甚至会对工程造成难以估量的损失,所以,应尽量将粗差剔除。粗差剔除:有些粗差可以通过分析观测值中的异常值加以发现;有些粗差可以通过检核(如进
4、行多余观测)计算加以发现;而有些小粗差很难发现,对测量成果的精度影响极大,已引起人们的高度重视,形成了现代误差理论中一个重要内容,叫做“粗差探测”。在进行测量工作时,测量人员只要有高度的责任感和认真负责的态度,较完善地组织好观测方法和记录工作,加强检核,严格执行“规范”等,粗差还是可以被及时发现和避免的。测量误差按性质可分为系统误差和偶然误差(又称随机误差)两类。二、系统误差(又称累积误差)在相同的观测条件下,对某量进行了n次观测,如果误差出现的大小和符号均相同或按一定的规律变化,这种误差称为系统误差
5、。系统误差一般具有累积性。例如,用一把名义长度为50m的钢尺去量距,经检定钢尺的实际长度为50.005m,则每量一尺,就带有+0.005m的误差,丈量的尺段越多,所产生的误差越大。所以这种误差与所丈量的距离成正比。在水准测量时,当视准轴与水准管轴不平行而产生夹角时,对水准尺的读数所产生的误差为D*i″/ρ″(ρ″=206265″是一弧度对应的秒值),它与水准仪至水准尺之间的距离D成正比,所以这种误差按某种规律变化。这些误差都属于系统误差,在测量成果中具有累积性,对测量成果的影响较为显著,但由于这些误差具
6、有一定的规律性,所以,我们可以采取措施来消除或尽量减少其对测量成果的影响。通常有以下三种处理方法:(1)检校仪器:把仪器的系统误差降低到最小程度。例如,在测量工作开始前,对仪器进行检验和校正,可以使系统误差减少。(2)求改正数:对观测成果进行必要的改正,如钢尺经过检定,求出尺长改正数。(3)对称观测:使系统误差对观测成果的影响互为相反数,例如:水准测量采用中间法,水平角测量采用盘左盘右观测等,都是为了达到削弱系统误差的目的。系统误差具有明显的规律性和累积性,其误差的大小和符号有一定的规律,所以可以采取适
7、当措施加以消除或削弱。当观测值中剔除了粗差,排除了系统误差的影响,或者与偶然误差相比系统误差处于次要地位后,占主导地位误差就是偶然误差。在观测过程中,系统误差和偶然误差总是相伴而生。当系统误差占主导地位时,观测误差就呈现一定的系统性;反之,当偶然误差占主导地位时,观测误差就呈现偶然性。如前所述,系统误差有明显的规律性,容易发现,也较易控制,所以在测量过程中总可以采取各种办法消除其影响,使其处于次要地位。而偶然误差则不然,不能完全消除,故本章中所讨论的测量误差,均系指偶然误差而言的。第五章测量误差的基本
8、知识三、偶然误差在相同的观测条件下,对某量进行了n次观测,如果误差出现的大小和符号均不一定,则这种误差称为偶然误差,又称为随机误差。例如,用经纬仪测角时的照准误差,钢尺量距时的读数误差等,都属于偶然误差。偶然误差,就其个别值而言,在观测前我们确实不能预知其出现的大小和符号。但若在一定的观测条件下,对某量进行多次观测,误差列却呈现出一定的规律性,称为统计规律。而且,随着观测次数的增加,偶然误差的规律性表现得更加明显。例如,在相同的观测条件下,
此文档下载收益归作者所有