资源描述:
《安徽省高中数学第四章圆与方程4.3.1空间直角坐标系教案新人教a版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、4.3.1空间直角坐标系教学目标1.掌握空间直角坐标系的有关概念;会根据坐标找相应的点,会写一些简单几何体的有关坐标.通过空间直角坐标系的建立,使学生初步意识到:将空间问题转化为平面问题是解决空间问题的基本思想方法;通过本节的学习,培养学生类比,迁移,化归的能力.2.解析几何是用代数方法研究解决几何问题的一门数学学科,在教学过程中要让学生充分体会数形结合的思想,进行辩证唯物主义思想的教育和对立统一思想的教育;培养学生积极参与,大胆探索的精神.教学重、难点教学重点:在空间直角坐标系中确定点的坐标.教学难点:
2、通过建立适当的直角坐标系确定空间点的坐标,以及相关应用.教学准备多媒体课件教学过程导入新课我们知道数轴上的任意一点M都可用对应一个实数x表示,建立了平面直角坐标系后,平面上任意一点M都可用对应一对有序实数(x,y)表示.那么假设我们建立一个空间直角坐标系时,空间中的任意一点是否可用对应的有序实数组(x,y,z)表示出来呢?为此我们学习空间直角坐标系,教师板书课题:空间直角坐标系.推进新课新知探究提出问题①在初中,我们学过数轴,那么什么是数轴?决定数轴的因素有哪些?数轴上的点怎样表示?②在初中,我们学过平面
3、直角坐标系,那么如何建立平面直角坐标系?决定平面直角坐标系的因素有哪些?平面直角坐标系上的点怎样表示?③在空间,我们是否可以建立一个坐标系,使空间中的任意一点都可用对应的有序实数组表示出来呢?④观察图1,体会空间直角坐标系该如何建立.7⑤观察图2,建立了空间直角坐标系以后,空间中任意一点M如何用坐标表示呢?讨论结果:①在初中,我们学过数轴是规定了原点、正方向和单位长度的直线.决定数轴的因素有原点、正方向和单位长度.这是数轴的三要素.数轴上的点可用与这个点对应的实数x来表示.②在初中,我们学过平面直角坐标系
4、,平面直角坐标系是以一点为原点O,过原点O分别作两条互相垂直的数轴Ox和Oy,xOy称平面直角坐标系,平面直角坐标系具有以下特征:两条数轴:①互相垂直;②原点重合;③通常取向右、向上为正方向;④单位长度一般取相同的.平面直角坐标系上的点用它对应的横、纵坐标表示,括号里横坐标写在纵坐标的前面,它们是一对有序实数(x,y).③在空间,我们也可以类比平面直角坐标系建立一个坐标系,即空间直角坐标系,空间中的任意一点也可用对应的有序实数组表示出来.④观察图2,OABC—D′A′B′C′是单位正方体,我们类比平面直角
5、坐标系的建立来建立一个坐标系即空间直角坐标系,以O为原点,分别以射线OA,OC,OD′的方向为正方向,以线段OA,OC,OD′的长为单位长度,建立三条数轴Ox,Oy,Oz称为x轴、y轴和z轴,这时我们说建立了一个空间直角坐标系O—xyz,其中O叫坐标原点,x轴、y轴和z轴叫坐标轴.如果我们把通过每两个坐标轴的平面叫做坐标平面,我们又得到三个坐标平面xOy平面,yOz平面,zOx平面.由此我们知道,确定空间直角坐标系必须有三个要素,即原点、坐标轴方向、单位长.图17图1表示的空间直角坐标系也可以用右手来确定
6、.用右手握住z轴,当右手的四个手指从x轴正向以90°的角度转向y轴的正向时,大拇指的指向就是z轴的正向.我们称这种坐标系为右手直角坐标系.如无特别说明,我们课本上建立的坐标系都是右手直角坐标系.注意:在平面上画空间直角坐标系O—xyz时,一般使∠xOy=135°,∠xOy=90°.即用斜二测画法画立体图,这里显然要注意在y轴和z轴上的都取原来的长度,而在x轴上的长度取原来长度的一半.同学们往往把在x轴上的长度取原来的长度,这就不符和斜二测画法的约定,直观性差.⑤观察图2,建立了空间直角坐标系以后,空间中任
7、意一点M就可以用坐标来表示了.已知M为空间一点.过点M作三个平面分别垂直于x轴、y轴和z轴,它们与x轴、y轴和z轴的交点分别为P、Q、R,这三点在x轴、y轴和z轴上的坐标分别为x,y,z.于是空间的一点M就唯一确定了一个有序数组x,y,z.这组数x,y,z就叫做点M的坐标,并依次称x,y,z为点M的横坐标.纵坐标和竖坐标.坐标为x,y,z的点M通常记为M(x,y,z).图2反过来,一个有序数组x,y,z,我们在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后通过P、Q与R分
8、别作x轴、y轴和z轴的垂直平面.这三个垂直平面的交点M即为以有序数组x,y,z为坐标的点.数x,y,z就叫做点M的坐标,并依次称x,y和z为点M的横坐标、纵坐标和竖坐标.(如图2所示)坐标为x,y,z的点M通常记为M(x,y,z).我们通过这样的方法在空间直角坐标系内建立了空间的点M和有序数组x,y,z之间的一一对应关系.注意:坐标面上和坐标轴上的点,其坐标各有一定的特征.如果点M在yOz平面上,则x=0;同样,zOx面上的点