2008-PHDTHESIS-Structured topic models for language英文学习材料

2008-PHDTHESIS-Structured topic models for language英文学习材料

ID:39255466

大小:1.32 MB

页数:133页

时间:2019-06-28

2008-PHDTHESIS-Structured topic models for language英文学习材料_第1页
2008-PHDTHESIS-Structured topic models for language英文学习材料_第2页
2008-PHDTHESIS-Structured topic models for language英文学习材料_第3页
2008-PHDTHESIS-Structured topic models for language英文学习材料_第4页
2008-PHDTHESIS-Structured topic models for language英文学习材料_第5页
资源描述:

《2008-PHDTHESIS-Structured topic models for language英文学习材料》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、StructuredTopicModelsforLanguageHannaM.WallachB.A.,UniversityofCambridge(2001);M.Sc.,UniversityofEdinburgh(2002)NewnhamCollegeUniversityofCambridgeTHESISSubmittedforthedegreeofDoctorofPhilosophy,UniversityofCambridge20083AbstractThisthesisintroducesnew

2、methodsforstatisticallymodellingtextusingtopicmod-els.Topicmodelshaveseenmanysuccessesinrecentyears,andareusedinavarietyofapplications,includinganalysisofnewsarticles,topic-basedsearchinterfacesandnavigationtoolsfordigitallibraries.Despitetheserecentsu

3、ccesses,thefieldoftopicmodellingisstillrelativelynewandthereremainsmuchtobeexplored.Onenotice-ableabsencefrommostofthepreviousworkontopicmodellingisconsiderationoflanguageanddocumentstructure—fromlow-levelstructures,includingwordorderandsyntax,tohigher-

4、levelstructures,suchasrelationshipsbetweendocuments.Thefocusofthisthesisisthereforestructuredtopicmodels—modelsthatcombinelatenttopicswithinformationaboutdocumentstructure,rangingfromlocalsen-tencestructuretointer-documentrelationships.Thesemodelsdrawo

5、ntechniquesfromBayesianstatistics,includinghierarchicalDirichletdistributionsandprocesses,Pitman-Yorprocesses,andMarkovchainMonteCarlomethods.SeveralmethodsforestimatingtheparametersofDirichlet-multinomialdistributionsarealsocompared.Themaincontributio

6、nofthisthesisistheintroductionofthreestructuredtopicmod-els.Thefirstisatopic-basedlanguagemodel.ThismodelcapturesbothwordorderandlatenttopicsbyextendingaBayesiantopicmodeltoincorporaten-gramstatistics.Abigramversionofthenewmodeldoesbetteratpredictingfut

7、urewordsthaneitheratopicmodeloratrigramlanguagemodel.Italsoprovidesinterpretabletopics.ThesecondmodelarisesfromaBayesianreinterpretationofaclassicgenerativede-pendencyparsingmodel.Thenewmodeldemonstratesthatparsingperformancecanbesubstantiallyimprovedb

8、yacarefulchoiceofpriorandbysamplinghyperparame-ters.Additionally,thegenerativenatureofthemodelfacilitatestheinclusionoflatentstatevariables,whichactasspecialisedpart-of-speechtagsor“syntactictopics”.Thethirdisamodelthatcaptureshigh-leve

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。