二元一次方程组应用题分类型十一种类型解析

二元一次方程组应用题分类型十一种类型解析

ID:39239058

大小:23.04 KB

页数:8页

时间:2019-06-28

二元一次方程组应用题分类型十一种类型解析_第1页
二元一次方程组应用题分类型十一种类型解析_第2页
二元一次方程组应用题分类型十一种类型解析_第3页
二元一次方程组应用题分类型十一种类型解析_第4页
二元一次方程组应用题分类型十一种类型解析_第5页
资源描述:

《二元一次方程组应用题分类型十一种类型解析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、二元一次方程组应用题分类型列方程(组)解应用题的一般步骤 :1、审:有什么,求什么,干什么; 2、设:设未知数,并注意单位; 3、找:等量关系; 4、列:用数学语言表达出来; 5、解:解方程(组). 6、验:检验方程(组)的解是否符合实际题意. 7、答:完整写出答案(包括单位). 列方程组思想:   找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等. 类型:(1)行程问题:(2)工程问题;(3)销售中的盈亏问题;(4)储蓄问题;(

2、5)产品配套问题;(6)增长率问题;(7)和差倍分问题:(8)数字问题; (9)浓度问题; (10)几何问题; (11)年龄问题;(12)优化方案问题一、行程问题(1) 三个基本量的关系:  路程s=速度v×时间t   时间t=路程s÷速度V   速度V=路程s÷时间t (2) 三大类型: ① 相遇问题:快行距+慢行距=原距 ② 追及问题:快行距-慢行距=原距 ③ 航行问题:顺水(风)速度=静水(风)速度+水流(风)速度               逆水(风)速度=静水(风)速度-水流(风)速度 顺速–逆速 = 2水速;顺速 + 逆速 = 2船

3、速 顺水的路程 = 逆水的路程 1、甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?2、两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。二、 工程问题三个基本量的关系: 工作总量=工作时间×工作效率; 工作时间=工作总量÷工作效率; 工作效率=工作总量÷工作时间 甲的工作量+乙的工作量=甲乙合作的工作总量, 注

4、:当工作总量未给出具体数量时,常设总工作量为“1”。1、一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?2、小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角

5、度考虑,小明家应选甲公司还是乙公司?请你说明理由. 三:商品销售利润问题利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100%   1、有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元? 2、某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表: AB进价(元

6、件)12001000售价(元

7、件)13801200求该商场购进A、B两种商品各多少件;四、银行储蓄问题银行利率问题:免税利

8、息=本金×利率×时间, 税后利息=本金×利率×时间—本金×利率×时间×税率 1.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)2、小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这

9、种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?五、生产中的配套问题产品配套问题:加工总量成比例 1、某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?1、一张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以做桌面50个,或做桌腿300条。现有5立方米的木料,那么用多少立方米木料做桌面,用多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方

10、桌?能配多少张方桌?六、增长率问题增长率问题:原量×(1+增长率)=增长后的量 原量×(1+减少率)=减少后的量  1、某工厂去年的利润(总产值—总支

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。