商仆过河问题——数学建模

商仆过河问题——数学建模

ID:39120702

大小:120.86 KB

页数:16页

时间:2019-06-25

商仆过河问题——数学建模_第1页
商仆过河问题——数学建模_第2页
商仆过河问题——数学建模_第3页
商仆过河问题——数学建模_第4页
商仆过河问题——数学建模_第5页
资源描述:

《商仆过河问题——数学建模》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、数学建模论文商仆过河问题作者:*学院**班***************号2014年12月4日-16-数学建模论文摘要:为了求解3个商人和3个随从的过河问题,用数学分析方法,建立数学模型,并且加以求解,展示动态规划思想的应用步骤。最后利用计算机编程进行求解,获得过河问题的完整求解过程;有效地求解类似多步决策问题的作用。关键词:多步决策计算机求解状态转移律图解法MATLAB程序一、问题的提出S个商人各带一个随从乘船过河,一只小船只能容纳K人,由他们自己划船。商人们窃听到随从们密谋,在河的任意一岸上,只要随从的人数比商人多,就杀掉

2、商人。但是如何乘船渡河的决策权在商人手中,商人们如何安排渡河计划确保自身安全?二、问题的关键解决的关键集中在商人和随从的数量上,以及小船的容量上,该问题就是考虑过河步骤的安排和数量上。各个步骤对应的状态及决策的表示法也是关键。三、问题的分析在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河。由于船上人数限制,这需要多步决策过程,必须考虑每一步船上的人员。动态规划法正是求解多步决策的有效方法。它要求把解的问题一层一层地分解成一级一级、规模逐步缩小的子问题。直到可以直接求出其解的子问题为止。分解成所有子问题按层次关系

3、构成一棵子问题树.树根是原问题。原问题的解依赖于子问题树中所有子问题的解。四、模型假设记第k次过河前A岸的商人数为XK,随从数为YKk=1,2,⋯XK,YK=0,1,2,3,将二维向量SK=(XK,YK)定义为状态.把满足安全渡河条件下的状态集合称为允许状态集合。记作S。则S={(XK,YK)

4、(XK=0,YK=0,1,2,3),(XK=3,YK=0,1,2,3),(XK=YK=1)(XK=YK=2)}记第k次过河船上的商人数为UK,随从数为VK将二维向量DK=(UK,VK)定义为决策.由小船的容量可知允许决策集合(记作D)为

5、D={(UK,VK)

6、UK+VK=l,2}={(O,1);(O,2);(1,O);(1,1);(2,O)}-16-数学建模论文五、模型建立:动态规划法正是求解多步决策的有效方法。它要求把解的问题一层一层地分解成一级一级、规模逐步缩小的子问题。直到可以直接求出其解的子问题为止。分解成所有子问题按层次关系构成一棵子问题树.树根是原问题。原问题的解依赖于子问题树中所有子问题的解。用动态规划法分析三名商人的过河问题。可得如下的递归树:-16-数学建模论文K=1A(3,2)B(0,1)A(3,2)B(0.1)K=2A(3,1)B(0,2

7、)(0,1)A(2,2)B(1,1)(0,2)A(3,0)B(0,3)(1,1)(2,0)(3,3)(1,1)(1,0)相同情况K=3(0,2)A(3,1)B(0,2)K=4K=5(0,1)(2,0)A(1,1)B(2,2)K=6A(2,2)B(1,1)K=7=A(0,2)B(3,1)K=8(0,1)(转下页)-16-数学建模论文A(0,3)B(3,0)K=9(0,2)A(0,1)B(3,2)A(1,1)B(2,2)A(0,2)B(3,1)(1,0)(0,1)A(0,0)B(3,3)K=10K=11(注解:当K为奇数时,船在B

8、岸;当K为偶数时,船在A岸。)通过分析该递归树,知道求解关键在于正确地写出基本的状态转移关系式和恰当的边界条件。因为k为奇数时,船是从A岸驶向B岸,k为偶数时。船是由B岸驶回A岸。所以状态SK随决策DK变化的规律是SK+1=SK+(-1)KDK,k=l,2,⋯,称之为状态转移律,这样,制定过河方案就归结为如下的多步决策问题:每一步,船由A岸驶向B岸或B岸驶回A岸,都要对船上的人员(商人UK,随从VK各几人)作出决策,在保证安全的前提下即两岸的商人数XK都不比随从数YK少,用有限步使人员全部过河.用状态(变量)SK表示某一岸的人

9、员状况,决策(变量)DK表示船上的人员状况,可以找出状态SK随决策DK变化的规律.这样安全过河问题就转化为:求决策DK∈D(k=1,2,……,n),使得状态SK∈S,按照状态转移律,由初始状态S1=(3,3),经有限步n到达状态SK+1=(O,O)。模型建立:SK+1=SK+(-1)KDK,k=l,2,3,其中DK∈D={(UK,VK)

10、UK+VK=l,2},{其中SK∈(XK,YK)

11、(XK=0,YK=1,2,3);(XK=3,YK=0,1,2,3);(XK=YK=1,2)},Sn+1=(0,0)这就是三个商人的过河问题模型

12、。-16-数学建模论文六、模型求解:穷举法:计算机编程(见附)先建立编程的基本过程,然后考虑模型,再编写程序。然后就可以得出结果了。开始变量赋值初始化判断是否完全过河选择一种可行方案,进行过河或返回,得到新的状态否判断是不是允许状态集合中的状态,并且还没在已经考虑的状态中是否

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。