论文 建模思想在小学数学中应用

论文 建模思想在小学数学中应用

ID:39089987

大小:38.50 KB

页数:8页

时间:2019-06-24

论文    建模思想在小学数学中应用_第1页
论文    建模思想在小学数学中应用_第2页
论文    建模思想在小学数学中应用_第3页
论文    建模思想在小学数学中应用_第4页
论文    建模思想在小学数学中应用_第5页
资源描述:

《论文 建模思想在小学数学中应用》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、1一寸光阴一寸金,寸金难买寸光阴。 2、少壮不努力,老大徒伤悲。 建模思想小学数学教学运用石家庄市草场街小学曹静摘要:数学模型是用数学语言概括地或近似地描述现实世界事物的特征、数量关系和空间形式的一种数学结构。从广义角度讲,数学的概念、定理、规律、法则、公式、性质、数量关系式、图表、程序等都是数学模型。数学的模型思想是一般化的思想方法,数学模型的主要表现形式是数学符号表达式和图表,因而它与符号化思想有很多相通之处,同样具有普遍的意义。为了把数学模型与数学知识或是符号思想明显地区分开来,本文主要从侠义的角度讨论数学

2、模型,即重点分析建模思想小学数学教学运用。关键词:数学模型的构建、应用建模的策略、途径  所谓数学模型,是指针对或参照某种事物的特征或数量间的相依关系,采用形式化的数学语言,概括地或近似地表述出来的一种数学结构。凡一切数学概念、数学理论体系、各种数学公式、各种方程以及由公式系列构成的算法系统等等,都可以称之为数学模型。如自然数“1”是“1个人”、“一件玩具”等抽象的结果,是反映这些事物共性的一个数学模型;方程是刻画现实世界数量关系的数学模型等。因此,建立数学模型的过程就是“数学建模”,数学模型思想从某种意义上来说

3、,可以理解为解题模式。一、小学“数学模型”构建《数学课程标准》(实验稿)倡导以“问题情境一建立模型——解释、应用与拓展”作为小学数学课程的基本叙述模式,并在教材中初步体现,这是数学新课程体系直接体现“问题解决”教学模式的反映。 (一)建模的策略 1.精选问题,创设情境,激发建模的兴趣。 数学模型都具有现实的生活背景,这是构建模型的基础和解决实际问题的需要。如构建“平均数”模型时,可以创设这样的情境:4名男生一组,5名女生一组,进行套圈游戏比赛,哪个组的套圈水平高一些?学生提出了一些解决的方法,如比较每组的总分、比

4、较每组中的最好成绩等,但都遭到了否决(初步建模失败)。这时需要寻求一种新的策略,于是构建“平均数”的模型成为学生的需求,同时也揭示了模型存在的背景与适用,的条件。  2.充分感知,积累表象,培育建模的基础。  教师首先要给学生提供丰富的感性材料,多侧面、多维度、全方位感知某类事物的特征或数量间的相依关系,为数学模型的准确构建提供可能。如“凑+法”模型构建的过程就是一个不断感知、积累的过程。首先学习“9加几”的算法,初步了解“凑十法”;接着采取半扶半放的方式学习“8、7加几”的算法,进一步引导学生感知“凑十法”更广

5、的适用范围;最后学习“6、5、4加几”的算法,运用“凑十法”灵活解决相关的计算问题。在此过程中,学生经历了观察、操作、实践等活动,充分体验了“凑十法”的内涵,为形成“凑十法”的模型奠定了坚实的基础。3.组织跃进,抽象本质,完成模型的构建。  具体生动的情境或问题只是为学生数学模型的建构提供了可能,如果忽视从具体到抽象的有效组织,那就无法建模。如“平行与相交”一课,如果只是让学生感知火车铁轨、跑道线、双杠、五线谱等具体的素材,而没有透过现象看本质的过程,当学生提取“平行线”的模型时,呈现出来的一定是形态各异的具体事

6、物,而不是具有一般意义的数学模型。“平行”的数学本质是“同一平面内两条直线间距离保持不变”。因此,教师应将学生关注的目标从具体上升为两条直线间的距离。可以让学生通过如下活动来引导认识过程:提出问题:为什么两条直线永远不相交?动手实验思考:①在两条平行线间作垂线。②量一量这些垂线的长度,你发现了什么?③你知道工人师傅是通过什么办法使两条铁轨始终保持平行的吗?经历这样的过程,学生对平行的理解必定走向半具体、半抽象的模型,从而构建起真正的数学认识,完成从物理模型到直观的数学模型再到抽象的数学模型的建构。 4.重视思想,

7、提炼方法,优化建模的过程。 不管是数学概念的建立、数学规律的发现、数学问题的解决,核心问题都在于数学思想方法的运用,它是数学模型的灵魂。如“圆柱的体积”一课教学,在建构体积公式这一模型的过程中要突出与之相伴的数学思想方法:一是转化,将未知转化成已知;二是极限思想。重视数学思想方法的提炼与体验,可以催化数学模型的建构,提升建构的理性高度。  5.回归生活,变换情境,拓展模型的外延。 从具体的问题经历抽象提炼的过程,初步构建起相应的数学模型,还要组织学生将数学模型还原为具体的数学直观或可感的数学现实,使已经构建的数学

8、模型不断得以扩充和提升。如“鸡兔同笼”的问题模型,是通过研究“鸡”、“兔”建立起来的,但建立模型的过程中不可能将所有的同类事物一一列举。因此,教师要带领学生继续扩展考察的范围,分析当情境、数据变化时模型的稳定性。可以出示如下问题让学生分析:“9张桌子共26人,正在进行乒乓球单打、双打比赛,单打、双打的各几张桌子?”“甲、乙两个车间共有126人,如果从甲车间每8人中选一名代

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。