Rational solutions of the discrete离散的有理解

Rational solutions of the discrete离散的有理解

ID:39065714

大小:316.55 KB

页数:23页

时间:2019-06-24

Rational solutions of the discrete离散的有理解_第1页
Rational solutions of the discrete离散的有理解_第2页
Rational solutions of the discrete离散的有理解_第3页
Rational solutions of the discrete离散的有理解_第4页
Rational solutions of the discrete离散的有理解_第5页
资源描述:

《Rational solutions of the discrete离散的有理解》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、RationalsolutionsofthediscretetimeTodalatticeandthealternatediscretePainlev´eIIequationAlanK.CommonandAndrewN.W.Hone††InstituteofMathematics,Statistics&ActuarialScience,UniversityofKent,CanterburyCT27NF,UKE-mail:A.N.W.Hone@kent.ac.ukAbstract.TheYablonskii-Vorob’evpolynomialsyn(t),whicharedefinedby

2、asecondorderbilineardifferential-differenceequation,providerationalsolutionsoftheTodalattice.Theyarealsopolynomialtau-functionsfortherationalsolutionsofthesecondPainlev´eequation(PII).Herewedefinetwo-variablepolynomialsYn(t,h)onalatticewithspacingh,byconsideringrationalsolutionsofthediscretetimeToda

3、latticeasintroducedbySuris.ThesepolynomialsareshowntohavemanypropertiesthatareanalogoustothoseoftheYablonskii-Vorob’evpolynomials,towhichtheyreducewhenh=0.TheyalsoproviderationalsolutionsforaparticulardiscretisationofPII,namelythesocalledalternatediscretePII,andthisconnectionleadstoanexpressionin

4、termsoftheUmemurapolynomialsforthethirdPainlev´eequation(PIII).ItisshownthatB¨acklundtransformationforthealternatediscretePainlev´eequationisasymplecticmap,andtheshiftintimeisalsosymplectic.FinallywepresentaLaxpairforthealternatediscretePII,whichrecoversJimboandMiwa’sLaxpairforPIIinthecontinuumli

5、mith→0.Submittedto:J.Phys.A:Math.Theor.arXiv:0807.3731v4[nlin.SI]23Sep2008RationalsolutionsofdiscreteTodaandalt-dPII21.IntroductionTheTodalatticed2xn=exn−1−xn−exn−xn+1,n∈Z(1)dt2wasthefirstintegrabledifferential-differenceequationtobediscovered[1].TheYablonskii-Vorob’evpolynomials[2,3]yieldrationalso

6、lutionsofboththeTodalatticeandthesecondPainlev´etranscendent(PII),sincethetau-functionsofPIIsatisfythebilinearformoftheTodalattice.Inapreviouswork[4]oneoftheauthorsobtainedanexpressionforsolutionsoftheTodalatticeasratiosofHankeldeterminants,byusingtheassociatedLaxpairtoconstructcontinuedfractions

7、olutionstoasequenceofRiccatiequations.ThisinturnledtoanexpressionfortheYablonskii-Vorob’evpoynomialsasHankeldeterminants[5],equivalenttothatdiscoveredmorerecently[6](seealso[7]).Herewewillconsiderthecasewhenthetimeevol

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。