A Preference Optimization Based基于偏好的优化

A Preference Optimization Based基于偏好的优化

ID:39065220

大小:404.54 KB

页数:25页

时间:2019-06-24

A Preference Optimization Based基于偏好的优化_第1页
A Preference Optimization Based基于偏好的优化_第2页
A Preference Optimization Based基于偏好的优化_第3页
A Preference Optimization Based基于偏好的优化_第4页
A Preference Optimization Based基于偏好的优化_第5页
资源描述:

《A Preference Optimization Based基于偏好的优化》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、APreferenceOptimizationBasedUnifyingFrameworkforSupervisedLearningProblemsFabioAiolliandAlessandroSperdutiAbstractSupervisedlearningischaracterizedbyabroadspectrumoflearningproblems,ofteninvolvingstructuredtypesofprediction,includingclassification,ranking-basedpredictions(la

2、belandinstanceranking),and(ordinal)regressioninitsvariousforms.Allthesedifferentlearningproblemsaretypicallyaddressedbyspecificalgorithmicsolutions.Inthischapter,weproposeageneralpreferencelearningmodel(GPLM),whichgivesaneasywaytotranslateanysupervisedlearningproblemandtheas

3、sociatedcostfunctionsintosetsofpreferencestolearnfrom.Alargemarginprincipledapproachtosolvethisproblemisalsoproposed.Examplesofhowtheproposedframeworkhasbeeneffectivelyusedbyustoaddressnon-standardreal-worldapplicationsarereportedshowingtheflexibilityandeffectivenessoftheapp

4、roach.1IntroductionSupervisedlearningisprobablythemostcommonlyusedlearningparadigmandalargespectrumoflearningalgorithmshavebeendevisedfordifferentlearningtasksinthelastdecades.Theneedforsuchalargespectrumoflearningalgorithmsis,inpart,duetothemanyreal-worldlearningproblems,t

5、hatarecharacterizedbyhet-erogeneoustasksandproblem-specificlearningalgorithmsfortheirsolution.Theseincludeclassificationandregressionproblems(includingmultilabelandmulticlassclassification,andmultivariateregression),aswellasranking-based(eitherlabelorinstanceranking)andordinal

6、regressionproblems.Typically,theapproachfollowedtodealwithanonstandardproblemistomapitintoaseriesofsimpler,well-knownproblemsandthentocombinetheresultingpredictions.Often,however,thistypeF.Aiolli(B)andA.SperdutiDepartmentofPureandAppliedMathematics-Padova-Italy,ViaTrieste63

7、,35131Padova,Italye-mail:aiolli@math.unipd.it,sperduti@math.unipd.itJ.FürnkranzandE.Hüllermeier(eds.),PreferenceLearning,19DOI10.1007/978-3-642-14125-6_2,cSpringer-VerlagBerlinHeidelberg201020F.AiolliandA.Sperdutiofmethodologylacksaprincipledtheorysupportingitand/orrequire

8、stoomuchcomputationalresourcestobepracticalforreal-worldapplications.Inthischapter

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。