数学人教版七年级下册5.1 相交线

数学人教版七年级下册5.1 相交线

ID:39019665

大小:353.00 KB

页数:8页

时间:2019-06-23

数学人教版七年级下册5.1 相交线_第1页
数学人教版七年级下册5.1 相交线_第2页
数学人教版七年级下册5.1 相交线_第3页
数学人教版七年级下册5.1 相交线_第4页
数学人教版七年级下册5.1 相交线_第5页
资源描述:

《数学人教版七年级下册5.1 相交线》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、5.1相交线教学设计1.理解对顶角的概念,探索并掌握对顶角的性质;理解垂线、垂线段的概念,能用三角尺或量角器画已知直线的垂线.2.理解点到直线的意义,会度量点到直线的距离.3.能在复杂图形中识别同位角、内错角和同旁内角.1.通过观察和动手操作,经历和体验图形的变化过程,努力学习数学语言.2.能用一些简单的数学语言叙述图形的某些位置关系.1.在动手实践、自主探索、合作交流中获得成功的体验,建立自信心.2.让学生感受数学与生活的密切联系,增强用数学的意识.【重点】垂直的概念、同位角、内错角、同旁内角在图形中的位置.【难点】点到直线的距离,正确识别同位角、内错角

2、、同旁内角.5.1.1相交线理解并掌握对顶角、邻补角的概念.1.通过动手操作、推断、交流等活动,进一步发展空间观念,培养识图能力、推理能力和表达能力.2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题.引导学生对图形进行观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,树立学习的信心.【重点】对顶角的性质.【难点】理解对顶角相等的性质的探索.【教师准备】直尺、量角器、剪刀、硬纸板.【学生准备】直尺、三角板.导入一:如图所示,要想测量两堵围墙所形成的∠AOB

3、的度数(人不能进入围墙内,又不能站在围墙上),甲、乙两人各有如下的测量方法:甲:延长AO至C,测得∠BOC的度数,可知∠AOB的度数.乙:延长AO至C,延长BO至D,测得∠COD的度数,可知∠AOB的度数.你知道他们这样测量的道理吗?导入二:教师出示一块硬纸板和一把剪刀,表演剪纸板的过程.问题:剪刀两个把手之间的角发生了什么变化?剪刀的张口怎么变化?教师展示剪纸板的过程,学生认真观察.教师应当注意先提出问题,以免在操作过程中分散学生的注意力,使学生没有注意观察应该观察的内容.学生观察以后,回答提出的问题.教师引导:如果将剪刀的构造看作两条相交的直线,这就关

4、系到两条相交直线所成的角的问题.[设计意图]通过动手操作,激发学生兴趣,同时使学生感受生活中的数学现象,通过教师的引导,使学生将剪刀张口的变化抽象成两条直线交角的变化,将实际问题转化为数学问题.导入三:在我们生活的世界中,蕴涵着大量的相交线和平行线,本节课要研究相交线所成的角和它的特征.教师多媒体出示相关的图片:学生欣赏图片,并从中观察相交线、平行线的实例.[设计意图]直接提出本节课的学习重点,使学生有一个明确的目标,对本节课的学习要点做到心中有数.一、邻补角与对顶角的概念[过渡语](针对导入二)通过刚才的观察,我们知道握紧剪刀把手时,随着两个把手之间的角

5、逐渐变小,剪刀刃之间的角也相应变小,直到剪开纸板.下面我们就来研究这两条直线相交所形成的角.问题1邻补角如教材图5.1-2,教师提出问题:1.在位置关系上,∠1和∠2有什么特点?2.量一量,在数量关系上,∠1和∠2有什么特点?提示:在位置关系上,∠1和∠2有一个公共边OC,另一边互为反向延长线;在∠1和∠2的数量关系上,学生可能从大小关系上进行比较,此时注意引导学生从两个角的和的关系去探求.问题总结:有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.追问:(1)在教材图5.1-2中,有几组邻补角?(2)在教材图5.1-1中,剪刀把

6、手之间角度变化的过程中,这种关系还存在吗?提示:(1)有四组邻补角,分别是∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4;(2)这种关系依旧存在.[知识拓展](1)邻补角指的是角的特殊位置关系,即这两个角相邻(有一条公共的边),从数量关系上说这两个角互补.(2)邻补角指的是两个角之间的互补关系.(3)邻补角一定互补,但互补的角不一定是邻补角.问题2对顶角[过渡语]在教材图5.1-2中,∠1和∠3之间有什么关系呢?学生再观察教材图5.1-2,教师提出问题:(1)在位置上,∠1和∠3有什么特点?(2)量一量,在数量关系上,∠1和∠3有什么特点?提示:(1)在位

7、置关系上,∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线;(2)通过测量和观察,学生可以发现∠1和∠3是相等的.概念提出:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.二、对顶角的性质思路一[过渡语]刚才通过测量和观察,我们发现了对顶角∠1和∠3是相等的.仅靠发现和观察,还不足以说明就是科学的结论,这就需要我们证明这个结论,怎样证明呢?性质证明:〔解析〕在教材图5.1-2中,∠1和∠2互补,∠3和∠2互补,由“同角的补角相等”可以得出∠1=∠3.同理,我们可以得出∠2=∠4.

8、这样我们就可以得出对顶角的性质:对顶角相等.证明:因为∠1与∠2互

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。