SVM支持向量机的基础知识及深入讲解

SVM支持向量机的基础知识及深入讲解

ID:39010985

大小:1.17 MB

页数:38页

时间:2019-06-23

SVM支持向量机的基础知识及深入讲解_第1页
SVM支持向量机的基础知识及深入讲解_第2页
SVM支持向量机的基础知识及深入讲解_第3页
SVM支持向量机的基础知识及深入讲解_第4页
SVM支持向量机的基础知识及深入讲解_第5页
资源描述:

《SVM支持向量机的基础知识及深入讲解》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、支持向量机(supportvectormachine,SVM)WangJiminNov18,2005OutlineSVM的理论基础线性判别函数和判别面最优分类面支持向量机SVM的研究与应用SVM的理论基础传统的统计模式识别方法只有在样本趋向无穷大时,其性能才有理论的保证。统计学习理论(STL)研究有限样本情况下的机器学习问题。SVM的理论基础就是统计学习理论。传统的统计模式识别方法在进行机器学习时,强调经验风险最小化。而单纯的经验风险最小化会产生“过学习问题”,其推广能力较差。推广能力是指:将学习机

2、器(即预测函数,或称学习函数、学习模型)对未来输出进行正确预测的能力。过学习问题“过学习问题”:某些情况下,当训练误差过小反而会导致推广能力的下降。例如:对一组训练样本(x,y),x分布在实数范围内,y取值在[0,1]之间。无论这些样本是由什么模型产生的,我们总可以用y=sin(w*x)去拟合,使得训练误差为0.SVM根据统计学习理论,学习机器的实际风险由经验风险值和置信范围值两部分组成。而基于经验风险最小化准则的学习方法只强调了训练样本的经验风险最小误差,没有最小化置信范围值,因此其推广能力较差。

3、Vapnik提出的支持向量机(SupportVectorMachine,SVM)以训练误差作为优化问题的约束条件,以置信范围值最小化作为优化目标,即SVM是一种基于结构风险最小化准则的学习方法,其推广能力明显优于一些传统的学习方法。形成时期在1992—1995年。SVM由于SVM的求解最后转化成二次规划问题的求解,因此SVM的解是全局唯一的最优解SVM在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中Joachims最近采用SVM在Reuter

4、s-21578来进行文本分类,并声称它比当前发表的其他方法都好OutlineSVM的理论基础线性判别函数和判别面最优分类面支持向量机SVM的研究与应用线性判别函数和判别面一个线性判别函数(discriminantfunction)是指由x的各个分量的线性组合而成的函数两类情况:对于两类问题的决策规则为如果g(x)>0,则判定x属于C1,如果g(x)<0,则判定x属于C2,如果g(x)=0,则可以将x任意分到某一类或者拒绝判定。线性判别函数下图表示一个简单的线性分类器,具有d个输入的单元,每个对应一个

5、输入向量在各维上的分量值。该图类似于一个神经元。超平面方程g(x)=0定义了一个判定面,它把归类于C1的点与归类于C2的点分开来。当g(x)是线性函数时,这个平面被称为“超平面”(hyperplane)。当x1和x2都在判定面上时,这表明w和超平面上任意向量正交,并称w为超平面的法向量。注意到:x1-x2表示超平面上的一个向量判别函数g(x)是特征空间中某点x到超平面的距离的一种代数度量从下图容易看出上式也可以表示为:r=g(x)/

6、

7、w

8、

9、。当x=0时,表示原点到超平面的距离,r0=g(0)/

10、

11、

12、w

13、

14、=w0/

15、

16、w

17、

18、,标示在上图中。总之:线性判别函数利用一个超平面把特征空间分隔成两个区域。超平面的方向由法向量w确定,它的位置由阈值w0确定。判别函数g(x)正比于x点到超平面的代数距离(带正负号)。当x点在超平面的正侧时,g(x)>0;当x点在超平面的负侧时,g(x)<0多类的情况利用线性判别函数设计多类分类器有多种方法。例如可以把k类问题转化为k个两类问题,其中第i个问题是用线性判别函数把属于Ci类与不属于Ci类的点分开。更复杂一点的方法是用k(k-1)/2个线性判别函数,把样本分为k个

19、类别,每个线性判别函数只对其中的两个类别分类。广义线性判别函数在一维空间中,没有任何一个线性函数能解决下述划分问题(黑红各代表一类数据),可见线性判别函数有一定的局限性。广义线性判别函数如果建立一个二次判别函数g(x)=(x-a)(x-b),则可以很好的解决上述分类问题。决策规则仍是:如果g(x)>0,则判定x属于C1,如果g(x)<0,则判定x属于C2,如果g(x)=0,则可以将x任意分到某一类或者拒绝判定。广义线性判别函数广义线性判别函数设计线性分类器Fisher线性判别方法如:Fisher线性

20、判别方法,主要解决把d维空间的样本投影到一条直线上,形成一维空间,即把维数压缩到一维。然而在d维空间分得很好的样本投影到一维空间后,可能混到一起而无法分割。但一般情况下总可以找到某个方向,使得在该方向的直线上,样本的投影能分开的最好。目的是降维,在低维空间中分割OutlineSVM的理论基础线性判别函数和判别面最优分类面支持向量机SVM的研究与应用最优分类面SVM是从线性可分情况下的最优分类面发展而来的,基本思想可用图2的两维情况说明.图中,方形点和圆形点代表两类样本

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。