欢迎来到天天文库
浏览记录
ID:39001025
大小:15.00 KB
页数:2页
时间:2019-06-23
《数学人教版七年级下册5.1.1 相交线》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、5.1 相交线5.1.1 相交线 1.理解对顶角和邻补角的概念,能在图形中辨认;(重点)2.掌握对顶角相等的性质和它的推证过程;(重点、难点)3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.一、情境导入同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行钢索,桥的侧面有许多相交钢索组成的图案;围棋棋盘的纵线相互平行,横线相互平行,纵线和横线相交.这些都给我们以相交线、平行线的形象.在我们生活中,蕴涵着大量的相交线和平行线.那么两条直线相交形成哪些角?这些角又有什么特征?二、合作探究探究点
2、一:对顶角和邻补角的概念【类型一】对顶角的识别下列图形中∠1与∠2互为对顶角的是( )解析:观察∠1与∠2的位置特征,只有C中∠1和∠2同时满足有公共顶点,且∠1的两边是∠2的两边的反向延长线.故选C.方法总结:判断对顶角只看两点:①有公共顶点;②一个角的两边分别是另一个角的两边的反向延长线.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】邻补角的识别如图所示,直线AB和CD相交所成的四个角中,∠1的邻补角是________.解析:根据邻补角的概念判断:有一个公共顶点、一条公共边,另一边互为延长线.∠1和∠2、
3、∠1和∠4都满足有一个公共顶点和一条公共边,另一边互为延长线,故为邻补角.故答案为∠2和∠4.方法总结:邻补角的定义包含了两层含义:相邻且互补.但需要注意的是:互为邻补角的两个角一定互补,但互补的角不一定是邻补角.变式训练:见《学练优》本课时练习“课堂达标训练”第2题探究点二:对顶角的性质【类型一】利用对顶角的性质求角的度数如图,直线AB、CD相交于点O,若∠BOD=42°,OA平分∠COE,求∠DOE的度数.解析:根据对顶角的性质,可得∠AOC与∠BOD的关系,根据OA平分∠COE,可得∠COE与∠AOC的关系,根据邻补角的性
4、质,可得答案.解:由对顶角相等得∠AOC=∠BOD=42°.∵OA平分∠COE,∴∠COE=2∠AOC=84°.由邻补角的性质得∠DOE=180°-∠COE=180°-84°=96°.方法总结:解决此类问题的关键是在图中找出对顶角和邻补角,根据两种角的性质找出已知角和未知角之间的数量关系.变式训练:见《学练优》本课时练习“课堂达标训练”第9题【类型二】结合方程思想求角度如图,直线AC,EF相交于点O,OD是∠AOB的平分线,OE在∠BOC内,∠BOE=12∠EOC,∠DOE=72°,求∠AOF的度数.解析:因为已知量与未知量的关
5、系较复杂,所以想到列方程解答,根据观察可设∠BOE=x,则∠AOF=∠EOC=2x,然后根据对顶角和邻补角找到等量关系,列方程.解:设∠BOE=x,则∠AOF=∠EOC=2x.∵∠AOB与∠BOC互为邻补角,∴∠AOB=180°-3x.∵OD平分∠AOB,∴∠DOB=12∠AOB=90°-32x.∵∠DOE=72°,∴90°-32x+x=72°,解得x=36°.∴∠AOF=2x=72°.方法总结:在相交线中求角的度数时,就要考虑使用对顶角相等或邻补角互补.若已知关系较复杂,比如出现比例或倍分关系时,可列方程解决角度问题.变式训练
6、:见《学练优》本课时练习“课后巩固提升”第3题【类型三】应用对顶角的性质解决实际问题如图,要测量两堵墙所形成的∠AOB的度数,但人不能进入围墙,如何测量?请你写出测量方法,并说明几何道理.解析:可以利用对顶角相等的性质,把∠AOB转化到另外一个角上.解:反向延长射线OB到E,反向延长射线OA到F,则∠EOF和∠AOB是对顶角,所以可以测量出∠EOF的度数,∠EOF的度数就是∠AOB的度数.方法总结:解决此类问题的关键是根据对顶角的性质把不能测量的角进行转化.变式训练:见《学练优》本课时练习“课后巩固提升”第7题探究点三:与对顶角
7、有关的探究问题我们知道:两直线交于一点,对顶角有2对;三条直线交于一点,对顶角有6对;四条直线交于一点,对顶角有12对……(1)10条直线交于一点,对顶角有________对;(2)n(n≥2)条直线交于一点,对顶角有________对.解析:(1)仔细观察计算对顶角对数的式子,发现式子不变的部分及变的部分的规律,得出结论,代入数据求解.如图①,两条直线交于一点,图中共有(4-2)×44=2对对顶角;如图②,三条直线交于一点,图中共有(6-2)×64=6对对顶角;如图③,四条直线交于一点,图中共有(8-2)×84=12对对顶角…
8、…按这样的规律,10条直线交于一点,那么对顶角共有(20-2)×204=90(对).故答案为90;(2)利用(1)中规律得出答案即可.由(1)得n(n≥2)条直线交于一点,对顶角的对数为2n(2n-2)4=n(n-1).故答案为n(n-1).方法总结:解决探索规
此文档下载收益归作者所有