on chromatic equivalence of graphs

on chromatic equivalence of graphs

ID:3899973

大小:433.17 KB

页数:11页

时间:2017-11-25

on chromatic equivalence of graphs_第1页
on chromatic equivalence of graphs_第2页
on chromatic equivalence of graphs_第3页
on chromatic equivalence of graphs_第4页
on chromatic equivalence of graphs_第5页
资源描述:

《on chromatic equivalence of graphs》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、ONCHROMATICEQUIVALENCEOFGRAPHSChong-YunChaoandEarlGlenWhitehead,Jr.DepartmentofMathematicsUniversityofPittsburghPittsburgh,Pa.15260Weshowthatthecycleonnverticesandeach0-grapharechromaticallyunique.Also,weprovethatalargeclassofnonisomorphicconnectedgraphsarechromaticallye

2、quivalent.Thisclassincludesthecactusgraphs.Combinatorialidentitiesareobtainedfromthematricesconnectingchromaticpolynomialbases.IINTRODUCTIONThegraphswhichweconsiderherearefinite,undirected,simpleandloopless.TwographsXandYaresaidtobechromaticallyequivalentiftheyhavethesam

3、echromaticpolynomial,i.e.,P(X,~)=P(Y,~).AgraphXissaidtobechromaticallyuniqueifP(Y,~)=P(X,~)impliesthatYisisomorphicto~.Therearemanygraphswhicharechromaticallyequivalentandarenonisomorphic,e.g.,twononisomorphictreeswiththesamenumberofvertices.Ontheotherhand,weknowthateach

4、ofthenullgraphs,Nn,withnverticesischromaticallyunique.Soiseachofthecompletegraphs,Kn,withnvertices.Itseemsnaturaltoaskwhetherwecanfindotherfamiliesofchromaticallyuniquegraphs.Here,in§2wesh~1thatthecycle,Cn,withnverticesforn~3,andthe9-graphs,en,withnverticesforn~4arechrom

5、aticallyuniquefamiliesofgraphswhereaen,n~4,isagraphconsistsoftwocycleswithoneedgeincommon.Eachofthewheels,Wn,withnverticesforn~4seemstobechromaticallyunique.However,wecanneitherprovenordisprovethat.122OurresultsandcomputationsdependheavilyonWhitney'sreductionformulain[i~

6、andWhitney'sbrokencycletheoremin[ii].TheformulaisP(X,~)=P(X,,~)+P(x",~),orP(X',A)=P(X,A)-P(X",A)whereX'isobtainedfromXbyaddinganedgeandX"isobtainedfromXbycontractingtheendpointsoftheaddededgetoasinglevertex.LetXbeagraphwithnvertices,YbeasubgraphofXsuchthatYhassedgesandpc

7、omponents.WedefinetherankiandnullityjofYbyi=n-pandj=s-i=s-n+p.Thenp=n-iands=i+j.Letm..bethenumberofsubgraphsmjofXwithrankiandnullityj.ThenP(X,X)=E(-i)i+jxn-i=Em.~n-ii,jmijimwheremi=j2(-i)i+jmijAbrokencycleisacyclewithoutthelastedge.Whitney'sbrokencycletheoremstates:Thenu

8、mber(-l)imiisequaltothenumberofsubgraphswithiedgesinXeachofwhichdoesnotcontainalltheedgesofanybrokencyc

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。