19.2.2-一次函数(3)

19.2.2-一次函数(3)

ID:38985509

大小:40.57 KB

页数:6页

时间:2019-06-23

19.2.2-一次函数(3)_第1页
19.2.2-一次函数(3)_第2页
19.2.2-一次函数(3)_第3页
19.2.2-一次函数(3)_第4页
19.2.2-一次函数(3)_第5页
资源描述:

《19.2.2-一次函数(3)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、授课人:汤德生课题19.2一次函数(3)课型新课教学媒体多媒体教学目标知识技能1.使学生熟练地作出一次函数的图象,会求一次函数与坐标轴的交点坐标;2.会作出实际问题中的一次函数的图象.过程方法1.使学生熟练地作出一次函数的图象,会求一次函数与坐标轴的交点坐标;2.会作出实际问题中的一次函数的图象.情感态度1.经历熟练作出一次函数的图象的过程,探索求一次函数与坐标轴的交点坐标的异同点;2.体会用类比的思想研究一次函数,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂.教学重点待定系数法确定一次函数的解析式灵活运用有关知识解决相关问题教学难点教学过程

2、设计教学程序及教学内容设计意图二次备课一、创设情境1.一次函数的图象是什么,如何简便地画出一次函数的图象?(一次函数y=kx+b(k≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象).2.正比例函数y=kx(k≠0)的图象是经过哪一点的直线?(正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线).3.平面直角坐标系中,x轴、y轴上的点的坐标有什么特征?4.在平面直角坐标系中,画出函数的图象.我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?二、探究归纳1.在画函数的图象时,通过列

3、表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y轴上,点(2,0)在x轴上,我们把这两个点依次叫做直线与y轴与x轴的交点.2.求直线y=-2x-3与x轴和y轴的交点,并画出这条直线.分析x轴上点的纵坐标是0,y轴上点的横坐标0.由此可求x轴上点的横坐标值和y轴上点的纵坐标值.解因为x轴上点的纵坐标是0,y轴上点的横坐标0,所以当y=0时,x=-1.5,点(-1.5,0)就是直线与x轴的交点;当x=0时,y=-3,点(0,-3)就是直线与y轴的交点.过点(-1.5,0)和(0,-3)所作的直线就是直线y=-2x-

4、3.所以一次函数y=kx+b,当x=0时,y=b;当y=0时,.所以直线y=kx+b与y轴的交点坐标是(0,b),与x使学生进一步认识数学是与实际问题密不可分,人们的需要产生数学。教师提出的问题有利于学生的思维通过这些实际问题,有利于加深学生对函数概念的理解,也为导出正比例函数的概念作铺垫。轴的交点坐标是.三、实践应用例1若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式.分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值.解因为直线y=-kx+b与直线y=-x平行,所以k=-

5、1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.例2求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.分析求直线与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标;结合图象,易知直线与x轴、y轴围成的三角形是直角三角形,两条直角边就是直线与x轴、y轴的交点与原点的距离.解当y=0时,x=2,所以直线与x轴的交点坐标是A(2,0);当x=0时,y=-3,所以直线与y轴的交点坐标是B(0,-3).例3画出第一节课中问题(1)中小明距北京的路程s(千

6、米)与在高速公路上行驶的时间t(时)之间函数s=570-95t的图象.通过归纳,分析,使学生明确正比例函数的特征。培养学生应用数学的能力分析这是一题与实际生活相关的函数应用题,函数关系式s=570-95t中,自变量t是小明在高速公路上行驶的时间,所以0≤t≤6,画出的图象是直线的一部分.再者,本题中t和s取值悬殊很大,故横轴和纵轴所选取的单位长不一致.讨论1.上述函数是否是一次函数?这个函数的图象是什么?2.在实际问题中,一次函数的图象除了直线和本题的图形外,还有没有其他的情形?你能不能找出几个例子加以说明.例4旅客乘车按规定可以免费携带一定重量的行李

7、.如果所带行李超过了规定的重量,就要按超重的千克收取超重行李费.已知旅客所付行李费y(元)可以看成他们携带的行李质量x(千克)的一次函数为.画出这个函数的图象,并求旅客最多可以免费携带多少千克的行李?分析求旅客最多可以免费携带多少千克的行李数,即行李费为0元时的行李数.为此只需求一次函数与x轴的交点横坐标的值.即当y=0时,x=30.由此可知这个函数的自变量的取值范围是x≥30.解函数(x≥30)图象为:当y=0时,x=30.所以旅客最多可以免费携带30千克的行李.例5今年入夏以来,全国大部分地区发生严重干旱.某市自来水公司为了鼓励市民节约用水,采取分

8、段收费标准,若某户居民每月应交水费y(元)是用水量x(吨)的函数,当0≤x≤5时,y=0.72

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。