资源描述:
《《正态分布曲线》课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、上节回顾:1.方差的概念与数学意义:如果,其概率,那么,2.随机变量ξ的方差性质:3.若ξ~B(n,p),则这里4.超几何分布的方差8.3正态分布引入正态分布在统计学中是很重要的分布。我们知道,离散型随机变量最多取可列个不同值,它等于某一特定实数的概率可能大于0,人们感兴趣的是它取某些特定值的概率,即感兴趣的是其分布列;连续型随机变量可能取某个区间上的任何值,它等于任何一个实数的概率都为0,所以通常感兴趣的是它落在某个区间的概率。离散型随机变量的概率分布规律用分布列描述,而连续型随机变量的概率分布规律用密度函数(
2、曲线)描述。复习100个产品尺寸的频率分布直方图25.23525.29525.35525.41525.47525.535产品尺寸(mm)频率组距复习200个产品尺寸的频率分布直方图25.23525.29525.35525.41525.47525.535产品尺寸(mm)频率组距复习样本容量增大时频率分布直方图频率组距产品尺寸(mm)总体密度曲线复习产品尺寸(mm)总体密度曲线高尔顿板11总体密度曲线0YX导入如数据测量的总体密度曲线就是或近似地是以下函数的图象:1、正态曲线的定义:函数式中的实数μ、σ(σ>0)是参
3、数,分别表示总体的平均数与标准差,称f(x)的图象称为正态曲线一测量1cm圆的周长为例p78cdab平均数XY若用X表示落下的小球第1次与高尔顿板底部接触时的坐标,则X是一个随机变量.X落在区间(a,b]的概率为:2.正态分布的定义:如果对于任何实数a
4、;在测量中,测量结果;在生物学中,同一群体的某一特征;……;在气象中,某地每年七月份的平均气温、平均湿度以及降雨量等,水文中的水位;总之,正态分布广泛存在于自然界、生产及科学技术的许多领域中。正态分布在概率和统计中占有重要地位。m的意义产品尺寸(mm)x1x2总体平均值反映总体随机变量的平均水平x3x4平均值x=μ产品尺寸(mm)总体平均数反映总体随机变量的平均水平总体标准差反映总体随机变量的集中与分散的程度平均数s的意义正态总体的函数表示式当μ=0,σ=1时标准正态总体的函数表示式012-1-2xy-33μ=0
5、σ=1标准正态曲线μ(-∞,μ](μ,+∞)(1)当=时,函数值为最大.(3)的图象关于对称.(2)的值域为(4)当∈时为增函数.当∈时为减函数.012-1-2xy-33μ=0σ=1标准正态曲线正态总体的函数表示式=μ例1、下列函数是正态密度函数的是()A.B.C.D.B3、正态曲线的性质012-1-2xy-3μ=-1σ=0.5012-1-2xy-33μ=0σ=1012-1-2xy-334μ=1σ=2具有两头低、中间高、左右对称的基本特征012-1-2xy-3μ=-1σ=0.5012-1-2xy-33μ=0σ=1
6、012-1-2xy-334μ=1σ=2(1)曲线在x轴的上方,与x轴不相交.(2)曲线是单峰的,它关于直线x=μ对称.3、正态曲线的性质(4)曲线与x轴之间的面积为1(3)曲线在x=μ处达到峰值(最高点)方差相等、均数不等的正态分布图示312σ=0.5μ=-1μ=0μ=1若固定,随值的变化而沿x轴平移,故称为位置参数;均数相等、方差不等的正态分布图示=0.5=1=2μ=0若固定,大时,曲线矮而胖;小时,曲线瘦而高,故称为形状参数。σ=0.5012-1-2xy-33X=μσ=1σ=2(6)当μ一定时,
7、曲线的形状由σ确定.σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.(5)当x<μ时,曲线上升;当x>μ时,曲线下降.并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近.3、正态曲线的性质正态曲线下的面积规律X轴与正态曲线所夹面积恒等于1。对称区域面积相等。S(-,-X)S(X,)=S(-,-X)正态曲线下的面积规律对称区域面积相等。S(-x1,-x2)-x1-x2x2x1S(x1,x2)=S(-x2,-x1)在标准正态分布中,正态密度曲线关于y轴
8、对称(偶函数)且Φ(a)+Φ(-a)=1.例1利用标准正态分布曲线求概率【思路点拨】Φ(a)=P(x<a),可利用φ(x)关于y轴的对称性求面积.(3)Φ(1)+Φ(-1)=1,∴Φ(-1)=1-Φ(1)=1-0.841=0.159,P(x<-1)=P(x>1)=Φ(-1)=0.159.∴P(-1<x<1)=1-P(x<-1)-P(x>1)=1-2Φ(-1)=1-2×0.