欢迎来到天天文库
浏览记录
ID:38890137
大小:1.42 MB
页数:4页
时间:2019-06-20
《4. 多边形的内角和与外角和》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第六章平行四边形4.多边形的内角和与外角和(二)泗县二中高成栋一、教学目标【知识与技能】经历探索多边形的外角和公式的过程;会应用公式解决问题;【过程与方法】培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力.【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造.教学重难点【教学重点】多边形外角和定理的探索和应用.【教学难点】灵活运用公式解决简单的实际问题;转化的数学思维方法的渗透.二、教学过程设计第一环节 创设情境,引入新课问题:(多媒体演示)清晨,小明沿一个五边
2、形广场周围的小路,按逆时针方向跑步。(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?(2)他每跑完一圈,身体转过的角度之和是多少?(3)在上图中,你能求出∠1+∠2+∠3+∠4+∠5的结果吗?你是怎样得到的?目的:利用生活情境,设计问题,激发学生的兴趣和积极性,同时给学生一定的思考空间。第二环节 问题解决对于上述的问题,如果学生能给出一些合理的解释和解答(例如利用内角和),可以按照学生的思路走下去。然后再给出“小亮的做法”或以“小亮做法”为提示,鼓励学生思考。如果学生对于这个问题无法突破,教师可以给出“小亮的做法”,或引导学生按“小亮的做法”这样的思路去思
3、考,以便解决这个问题。小亮是这样思考的:如图所示,过平面内一点O分别作与五边形ABCDE各边平行的射线OA′,OB′,OC′,OD′,OE′,得到∠α,∠β,∠γ,∠δ,∠θ,其中,∠α=∠1,∠β=∠2,∠γ=∠3,∠δ=∠4,∠θ=∠5.这样,∠1+∠2+∠3+∠4+∠5=360°问题引申:1.如果广场的形状是六边形那么还有类似的结论吗?2.如果广场的形状是八边形呢?目的:通过问题的解决和延伸,引发学生自主思考,由特殊到一般,培养学生解决问题的逻辑思维能力,也为多边形外角和的得出做好铺垫。第三环节 多边形的外角与外角和1.多边形内角的一边与另一边的反向延长线所组成的
4、角叫做这个多边形的外角。2.在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。探究多边形的外角和,提出一般性的问题:一个任意的凸n边形,它的外角和是多少?鼓励学生用多种方法解决这个问题,可以参考第二环节解决特殊问题的方法去解决这个一般性的问题。方法Ⅰ:类似探究多边形的内角和的方法,由三角形、四边形、五边形…的外角和开始探究;方法Ⅱ:由n边形的内角和等于(n-2)·180°出发,探究问题。结论:多边形的外角和等于360°(1)还有什么方法可以推导出多边形外角和公式?(2)利用多边形外角和的结论,能否推导出多边形内角和的结论?第四环节 巩固练习例1一个多边
5、形的内角和等于它的外角和的3倍,它是几边形?解:设这个多边形是n边形,则它的内角和为(n-2)﹒180°,外角和为360°。则根据题意,得(n-2)﹒180°=3×360°解得n=8所以这个多边形是八边形。随堂练习1.一个多边形的内角和是外角和的2倍,这个多边形是几边形?如果一个多边形的每个内角都相等,那么每个内角等于多少度?2.右图是三个不完全相同的正多边形拼成的无缝隙、不重叠的图形的一部分,这种多边形是几边形?为什么?挑战自我:1.在四边形的四个内角中,最多能有几个钝角?最多能有几个锐角?2.在n边形的n个内角中,最多能有几个钝角?最多能有几个锐角?挑战自我的2个问
6、题,对于新授课上的学生而言,难度是比较大的。因为之前不管是多边形的内角和还是外角和,基本上都是利用等式,从“正向”解决的。而这里要解决的问题,在解决的过程中,需要用到简单的不等式知识和“反证”的思想,对于初次接触这些的学生而言,难度是比较大的。教师要注意讲解的方式方法。第五环节 课时小结多边形的外角及外角和的定义;多边形的外角和等于360°;在探求过程中我们使用了观察、归纳的数学方法,并且运用了类比、转化等数学思想.第六环节 布置作业:习题6.8第1,2,3,4,5题三、教学反思本节课的设计突出对多边形的外角和公式的探究与推导过程,探究过程既有类比前一节课的方法,又有承
7、接多边形内角和的新方法;既是新知识的学习过程,又是旧知识的拓展过程。相信这样的设计一定能够达到教学目标的三个维度的要求。另外,可以考虑增加一些课堂中的习题量,以帮助学生巩固新知识。设计板书如下4.6.2探索多边形的外角和多边形的外角的概念(方法Ⅱ)多边形的外角和的概念典例精析推导多边形的外角和公式(方法Ⅰ)
此文档下载收益归作者所有